Image Characterization by Morphological Hierarchical Representations PhD Defense

Amin Fehri

Supervisors: Fernand Meyer and Santiago Velasco-Forero Center of Mathematical Morphology, Mines ParisTech, PSL Research University May 25, 2018

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Information is intrinsically multi-scale

- Single-scale observation is very restrictive.
- Need for multi-scale representations.

Multi-scale representations

- Decomposing images into fundamental elements easily interpreted
- Linked with human perception
- Scale-space theory ¹
- Fractal model
- Granulometry
- Hierarchical partitioning

(a) Levels of a scale-space decomposition.

(b) Fractal model

(C) Granulometry approach (d) Hierarchical partitioning

¹Lindeberg, T., and Bart M.H.R. "Linear scale-space I: Basic theory." Geometry-Driven Diffusion in Computer Vision. Springer, 1994. 1-38.

A variety of morphological hierarchical models

In the literature:

- Tree-of-shapes
- Max-tree, min-tree
- Constrained connectivity

In the thesis:

- Watershed hierarchies
- Waterfall hierarchy
- Binary-scale climbing hierarchy
- Hierarchies of levelings
- Stochastic Watershed (SWS) hierarchies

Multiplying the viewpoints

A single scale is usually not sufficient

- The information is often distributed across scales.
- \rightarrow Hierarchical representation

A single hierarchy is usually not sufficient

- There is no single hierarchy that captures all the desired features.
- \rightarrow Multi-model approach by considering several hierarchies

Thesis goal:

Multiply and combine morphological hierarchical representations to be used in various applications

Graph-based framework

Choice to work with graphs:

- Independent from dimension
- Powerful tools available
- Can represent various objects (images, social networks, etc.)

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Hierarchies on graphs

- Cutting edges of the MST by decreasing valuations \rightarrow progressive fusion of regions
 - \circ Minimum Spanning Forest (MSF) hierarchy (\mathcal{H}, λ)
 - \circ λ : ultrametric distance
 - Can be modeled as a tree called **dendrogram**
 - Can be visualized as a **saliency map**

Hierarchies on graphs

- (Zahn)²Inconsistent edges are cut first
- **Trivial** hierarchy: edges weighed according to **local** cues (gradient)
 - Myopic
 - Chaining effect
- Need to enlarge the information support

(b) Trivial hierarchy saliency map

 \rightarrow Need to redefine edge weights to highlight significant contours

²Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on computers, 100(1), 68-86.

Stochastic Watershed ³

Process

- Iterate N times:
 - Draw random markers **m**_i
 - Compute associated watershed $W_{\mathbf{m}_i}(\mathbf{I})$

•
$$\tilde{W}(\mathbf{I}) = \frac{\sum_{i \in \{1,\dots,N\}} W_{\mathsf{m}_i}(\mathbf{I})}{N}$$

Non-local estimation of contours strength

- Computationally heavy
- Fuzzy contours

³Angulo, J., & Jeulin, D. (2007, October). Stochastic watershed segmentation. In PROC. of the 8th International Symposium on Mathematical Morphology (pp. 265-276).

Graph built upon a **fine partition** of the image⁴:

(c) Image (d) Waterpixels (e) Mosaic image

⁴Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T. and Decencière, E., 2015. Waterpixels. IEEE Transactions on Image Processing, 24(11), pp.3707-3716.

Concept Idea

• Input: any hierarchy on a MST

- Markers: random sampling
- **Output**: new MST valuations

Marker-based segmentation

For an edge e_{st} of the MST:

- If $\eta_{st} = \lambda$, we cut edges with weights $> \lambda$.
- Subtrees T_s and T_t underlie regions R_s and R_t .
- e_{st} is a segmentation frontier iff:
 - \exists at least one marker in R_s
 - \exists at least one marker in R_t

Calculus

For any markers distribution:

 $\theta_{st} = \Pr(\{\exists \text{ at least one marker in } R_s\} \text{ AND}\{\exists \text{ at least one marker in } R_t\})$ = 1 - Pr({\\$\\$marker in } R_s\} OR{\\$marker in } R_t\}) = 1 - Pr({\\$marker in } R_s\}) - Pr({\\$marker in } R_t\}) + Pr({\\$marker in } R_s \cup R_t\})

For a distribution of markers following a **uniform Poisson process**:

• $\Pr(\{\exists \text{ marker in } R\}) = 1 - \exp^{-\frac{a}{S}\omega}$, when drawing ω markers.

 $\Rightarrow \theta_{st} = 1 - \Pr(\{ \nexists \text{ marker in } R_s \}) - \Pr(\{ \nexists \text{ marker in } R_t \}) + \Pr(\{ \nexists \text{ marker in } R_s \cup R_t \})$

$$= 1 - \exp^{-\frac{a_s}{S}\omega} - \exp^{-\frac{a_t}{S}\omega} + \exp^{-\frac{(a_s+a_t)}{S}\omega}$$

Calculus

For any markers distribution:

 $\theta_{st} = \Pr(\{\exists \text{ at least one marker in } R_s\} \text{ AND}\{\exists \text{ at least one marker in } R_t\})$ = 1 - Pr({\\$\\$marker in } R_s\} OR{\\$marker in } R_t\}) = 1 - Pr({\\$marker in } R_s\}) - Pr({\\$marker in } R_t\}) + Pr({\\$marker in } R_s \cup R_t\})

For a distribution of markers following a **uniform Poisson process**:

• $\Pr(\{\exists \text{ marker in } R\}) = 1 - \exp^{-\frac{a}{S}\omega}$, when drawing ω markers.

 $\Rightarrow \theta_{st} = 1 - \Pr(\{ \nexists \text{ marker in } R_s \}) - \Pr(\{ \nexists \text{ marker in } R_t \}) + \Pr(\{ \nexists \text{ marker in } R_s \cup R_t \})$

$$= 1 - \exp^{-\frac{a_s \times \lambda_{st}}{S \times \lambda_{max}}\omega} - \exp^{-\frac{a_t \times \lambda_{st}}{S \times \lambda_{max}}\omega} + \exp^{-\frac{(a_s + a_t) \times \lambda_{st}}{S \times \lambda_{max}}\omega}$$

Illustration

(a) Image

hierarchy

(c) Area-based SWS hierarchy (d) Volume-based SWS hierarchy

A great versatility

- Initial dissimilarity
- Type of SWS hierarchy: area-based, volume-based, symmetrical or not
- Markers: points or sets, regionalized or not
- Probability laws governing markers distributions: homogenous, non-homogenous, a priori or learned

A great versatility

- Initial dissimilarity
- Type of SWS hierarchy: area-based, volume-based, symmetrical or not
- Markers: points or sets, regionalized or not
- Probability laws governing markers distributions: homogenous, non-homogenous, a priori or learned

A great versatility

- Initial dissimilarity
- Type of SWS hierarchy: area-based, volume-based, symmetrical or not
- Markers: points or sets, regionalized or not
- Probability laws governing markers distributions: homogenous, non-homogenous, a priori or learned

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

A great versatility

- Initial dissimilarity
- Type of SWS hierarchy: area-based, volume-based, symmetrical or not
- Markers: points or sets, regionalized or not
- Probability laws governing markers distributions: homogenous, non-homogenous, a priori or learned

A growing number of spatial information sources

- Problem-specific spatial information
- Multimodal images

How can we use them to pilot the hierarchical segmentation process?

SWS model adaptation

Markers spread following a Poisson process

For a region R:

- $\Lambda(R)$ = mean value of the number of markers falling in R
- $\Pr(\nexists \text{ marker in } R) = \exp^{-\Lambda(R)}$

Choice of density

- Homogenous density λ : $\Lambda(R) = \operatorname{area}(R)\lambda$,
- Non-uniform density λ : $\Lambda(R) = \int_{(x,y) \in R} \lambda(x,y) \, dx dy$

Hierarchy with Regionalized Fineness (HRF)

Exogenous information

- E: object or class of interest
- θ_E : probability density function (PDF) associated with E on the domain D of the image I
- $PM(I, \theta_E)$: probabilistic map associated, in which each pixel p(x, y) of I takes as value $\theta_E(x, y)$ its probability to be part of E

New e_{st} valuation:

$$heta_{st} = 1 - \exp^{-\Lambda(\mathsf{R}_s)} - \exp^{-\Lambda(\mathsf{R}_t)} + \exp^{-\Lambda(\mathsf{R}_s \cup \mathsf{R}_t)}$$

 $\Lambda(\mathsf{R}) = \operatorname{area}(R)\lambda$

Hierarchy with Regionalized Fineness (HRF)

Exogenous information

- E: object or class of interest
- θ_E : probability density function (PDF) associated with E on the domain D of the image I
- $PM(\mathbf{I}, \theta_E)$: probabilistic map associated, in which each pixel p(x, y) of \mathbf{I} takes as value $\theta_E(x, y)$ its probability to be part of E

Key idea

$$\theta_{st} = 1 - \exp^{-\Lambda_E(\mathsf{R}_s)} - \exp^{-\Lambda_E(\mathsf{R}_t)} + \exp^{-\Lambda_E(\mathsf{R}_s \cup \mathsf{R}_t)}$$
$$\Lambda_E(\mathsf{R}) = \int_{(x,y) \in \mathsf{R}} \theta_E(x,y) \lambda(x,y) \, \mathrm{d}x \mathrm{d}y$$

Methodology

• Compute the fine partition π_0 , RAG \mathcal{G} , $\mathcal{MST}(\mathcal{G})$

(f) Image

• Compute a probabilistic map $\pi_{\mu} = \pi_{\mu}(\pi_0, \mathsf{PM}(\mathbf{I}, \theta_E))$

• compute new values of edges using previous formulas

Application 1: Scalable transmission favoring regions of interest Prior: face detection ⁵

(m) Image

(n) Probability map associated with "Face" class

Figure : Face detection using Haar wavelets

⁵ Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR 2001. Proceedings of the 2001 IEEE CSC (Vol. 1, pp. I-I). IEEE.

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

Application 1: Scalable transmission favoring regions of interest

Application 1: Scalable transmission favoring regions of interest Prior: non-blur zones detection ⁶

(a) Images

(b) Probability maps of non-blur zones

⁶ Su, B., Lu, S., & Tan, C. L. (2011, November). Blurred image region detection and classification. In Proceedings of the 19th ACM international conference on Multimedia (pp. 1397-1400). ACM.

(c) Non homogenous law

(d) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

Application 1: Scalable transmission favoring regions of interest

(a) Non homogenous law

(b) Homogenous law

Figure : Saliency images

Application 1: Scalable transmission favoring regions of interest

Images from iCoSeg database ⁷.

⁷ Batra, Dhruv, et al. "Interactively co-segmentating topically related images with intelligent scribble guidance." International journal of computer vision 93.3 (2011): 273-292.

- Matching of interest points SIFT/SURF/ORB between the image to segment and all other images of the class.
- Retain all matched keypoints.

(b) Associated probability map

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

Figure : Saliency images for homogenous process

Figure : Saliency images for non-homogenous process

Application 3: weakly-supervised hierarchical segmentation Weakly-supervised HRF algorithm

Application 3: weakly-supervised hierarchical segmentation CNN-based localization method

VGG16 reference CNN classifier, trained on ImageNet ⁸.

- Input: image in 224 \times 224 pixels
- Output = vector of size 1000, appearance probability of each class.

Figure : VGG16 Network Architecture ⁹

⁸http://image-net.org/

⁹ http://www.robots.ox.ac.uk/vgg/research/very_deep/

¹⁰ M. Oquab, L. Bottou, I. Laptev, J. Sivic; "Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural Networks", in CVPR, 2015, pp. 685-694

Figure : Generation of probability maps ¹⁰

(a) Image

(b) Heatmap output

by CNN-based method

(a) Image

(b) Prior: main class localization

Figure : Image and localization image

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 95 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 90 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 85 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 80 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 70 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 65 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 60 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 55 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 45 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 40 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 35 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 30 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions

(a) Non homogenous law

(b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

Figure : Saliency images

Perspectives

- Go further: have specific markers depending on the regions
- Use such hierarchies to refine the output of a segmentation module

• Towards sequential refinings

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Hierarchies can be combined to express complex properties

• Sequential combinations by chaining

Combinations of hierarchies Sequential combinations by chaining

Combinations of hierarchies Sequential combinations by chaining

Best segmentation $(\mathcal{H}^*, \lambda^*)$ in sequential combinations for a given score ¹¹.

¹¹ Fehri, A., Velasco-Forero, S., & Meyer, F. (2016, August). Automatic selection of stochastic watershed hierarchies. In EUSIPCO, 2016 (pp. 1877-1881). IEEE.

Hierarchies can be combined to express complex properties

• **Parallel (algebraic) combinations**: supremum, infimum, linear combination, and, or, not

Parallel (algebraic) combinations

- General case

Type of combination	Associated ultrametric
Lattice of hierarchies	
$INF((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2))$	$SUP(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
$SUP\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$INF(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
Probabilistic combinations	
$AND\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2$
$OR\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 + oldsymbol{\lambda}_2 - (oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2)$
$NOT((\mathcal{H}, \boldsymbol{\lambda}))$	$1 - \lambda$
Statistical combinations	
$MEAN\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$rac{1}{2}(oldsymbol{\lambda}_1+oldsymbol{\lambda}_2)$
$LC\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$\alpha \times \boldsymbol{\lambda}_1 + \beta \times \boldsymbol{\lambda}_2$

Type of combination	Associated ultrametric
Lattice of hierarchies	
$INF\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$SUP(\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2)$
$SUP\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$INF(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
Probabilistic combinations	
$AND\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2$
$OR\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 + oldsymbol{\lambda}_2 - (oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2)$
$NOT((\mathcal{H}, \boldsymbol{\lambda}))$	$1 - \lambda$
Statistical combinations	
$MEAN\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$rac{1}{2}(oldsymbol{\lambda}_1+oldsymbol{\lambda}_2)$
$LC\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$\alpha \times \boldsymbol{\lambda}_1 + \beta \times \boldsymbol{\lambda}_2$

- Order relation between hierarchies.
 - \rightarrow SUP, INF of two hierarchies
- The supremum of two ultrametrics is an ultrametric.
- In general, other operators do not produce an ultrametric.

Type of combination	Associated ultrametric
Lattice of hierarchies	
$INF((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2))$	$SUP(\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2)$
$SUP\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$INF(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
Probabilistic combinations	
$AND\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2$
$OR\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$oldsymbol{\lambda}_1 + oldsymbol{\lambda}_2 - (oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2)$
$NOT((\mathcal{H}, \boldsymbol{\lambda}))$	$1 - \lambda$
Statistical combinations	
$MEAN\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$rac{1}{2}(oldsymbol{\lambda}_1+oldsymbol{\lambda}_2)$
$LC\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$\alpha \times \boldsymbol{\lambda}_1 + \beta \times \boldsymbol{\lambda}_2$

- SWS hierarchies → ultrametric expressing the probabilities of simple events implying markers.
- Can be combined using boolean logical operators to express more complex events.

Type of combination	Associated ultrametric
Lattice of hierarchies	
$INF((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2))$	$SUP(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
$SUP\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$INF(oldsymbol{\lambda}_1,oldsymbol{\lambda}_2)$
Probabilistic combinations	
$AND\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2$
$OR\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2)\right)$	$oldsymbol{\lambda}_1 + oldsymbol{\lambda}_2 - (oldsymbol{\lambda}_1 imes oldsymbol{\lambda}_2)$
NOT $((\mathcal{H}, \boldsymbol{\lambda}))$	$1 - \lambda$
Statistical combinations	
$MEAN\left((\mathcal{H}_1,\boldsymbol{\lambda}_1),(\mathcal{H}_2,\boldsymbol{\lambda}_2)\right)$	$rac{1}{2}(oldsymbol{\lambda}_1+oldsymbol{\lambda}_2)$
$LC\left((\mathcal{H}_1, \boldsymbol{\lambda}_1), (\mathcal{H}_2, \boldsymbol{\lambda}_2) ight)$	$lpha imes oldsymbol{\lambda}_1 + eta imes oldsymbol{\lambda}_2$

- Any other combination is possible.
- Mean, median, linear combinations.

Parallel (algebraic) combinations - General case

$$I \xrightarrow{\mathcal{D}_{1}} \mathcal{R}AG(\mathcal{D}_{1}) \xrightarrow{\mathcal{M}ST_{1}} (\mathcal{H}_{1}, \boldsymbol{\lambda}_{1})$$

$$\mathcal{D}_{2} \mathcal{R}AG(\mathcal{D}_{2}) \xrightarrow{\mathcal{M}ST_{2}} (\mathcal{H}_{2}, \boldsymbol{\lambda}_{2})$$

$$\mathcal{D}_{1,2} = \bigoplus(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2})$$

$$\mathcal{R}AG(\mathcal{D}_{1,2}) \xrightarrow{\mathcal{M}ST_{1,2}} (\mathcal{H}_{1,2}, \boldsymbol{\lambda}_{1,2})$$

Parallel (algebraic) combinations - Simpler case

$$I \xrightarrow{\mathcal{D}} (\mathcal{H}_{1}, \mathbf{\lambda}_{1})$$

$$(\mathcal{H}_{2}, \mathbf{\lambda}_{2})$$

$$(\mathcal{H}_{1,2} = \Theta(\mathbf{\lambda}_{1}, \mathbf{\lambda}_{2})$$

Condition

 \oplus s.t. $\forall (x_1, x_2, y_1, y_2) \in \mathbb{R}^4_+, (x_1 \leq x_2) \text{ and } (y_1 \leq y_2) \Rightarrow \oplus (x_1, y_1) \leq \oplus (x_2, y_2)$

Combinations of hierarchies Example

Combinations of hierarchies

Example

Combinations of hierarchies

Example

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Structuring the space of hierarchies

 \rightarrow Explosion of the number of possible hierarchies

Gromov-Hausdorff distance between hierarchies

Dimensionality reduction, data analysis

PSL 🖈

General case

Definition:

 $\begin{aligned} \bullet \ & \operatorname{d}_{\operatorname{GH}}(X_1, X_2) := \frac{1}{2} \min_{f,g} \max(dis(f), dis(g), dis(f,g)) \\ & \operatorname{d}_{\operatorname{GH}}(f) := \max_{(x,x') \in X_1^2} |u_{\alpha}(x,x') - u_{\beta}(f(x), f(x'))| \\ & \operatorname{d}_{\operatorname{d}}(f,g) := \max_{x \in X_1, x' \in X_2} |u_{\alpha}(x, g(x')) - u_{\beta}(x', f(x))| \end{aligned}$

Simplest case

Simplest case

It simply becomes:

• $d_{GH}((X, u_{\alpha}), (X, u_{\beta})) = \max_{x, x' \in X} |u_{\alpha}(x, x') - u_{\beta}(x, x')|$

Simplest case

It simply becomes:

• $d_{GH}((X, u_{\alpha}), (X, u_{\beta})) = \max_{x, x' \in X} |u_{\alpha}(x, x') - u_{\beta}(x, x')|$

Characterizing images by interhierarchy distances

- Multiplying points of views on the same image
- The distances between hierarchies provides valuable information
- New features: interhierarchy distances

Dead-leaves simulated images

Figure : Simulated images by dead leaves model with different primary grains.

Feature generation

 $\mathcal{H}_{trivial}$ $\mathcal{H}_{surf-Hex}$ $\mathcal{H}_{surf-\mathcal{V}ert}$ $\mathcal{H}_{surf extsf{-}Horiz}$ $d_{GH}(\mathcal{H}_{i},\mathcal{H}_{i})$ AND $(\mathcal{H}_{surf-\mathcal{H}e\chi}, \mathcal{H}_{surf-\mathcal{V}ert})$ **OR** ($\mathcal{H}_{surf-\mathcal{H}ex}$, $\mathcal{H}_{surf-\mathcal{V}ert}$) **GH-distance matrix** ... Hierarchies

"Aha" moment ¹²

Figure : Classification error vs the number of images in the training set (25 repetitions) : (a) Linear SVM on proposed features, (b) CNN.

¹²Yan Z, Zhou XS. How intelligent are convolutional neural networks?. arXiv preprint arXiv:1709.06126. 2017 Sep 18.

Understandability

• Most discriminative feature: $d_{GH}(\mathcal{H}_{surf-VertSE}, \mathcal{H}_{AND(surf-VertSE, surf-HexSE)})$

Texture classification

(c) Banded

(d) Chequered

(e) Dotted

(f) Fibrous

PSL*

Plan

Introduction

Stochastic Watershed (SWS) Hierarchies

Introducing prior spatial information

Combinations of hierarchies

Structuring the space of hierarchies

Conclusion

Our contributions

- Various morphological hierarchical representations
- Versatile approach to introduce spatial prior information for hierarchical segmentation
- Combination of hierarchies
- Methodology to study the space of hierarchies
- Interhierarchy distance matrices as powerful geometric features
- Hierarchical representations module in the open-source Smil library

Perspectives

- Extension to other types of graphs
- The MST is usually not unique: methods to avoid an arbitrary choice
- Interhierarchy distances matrices for unsupervised image classification
- Local contour descriptors as signatures of saliencies
- Refine the output of a segmentation module by exploring a hierarchy with more details in the zones of interest

Personal publications

- Fehri, A., S. Velasco-Forero, and F. Meyer (2016). « Automatic Selection of Stochastic Watershed Hierarchies ». In: 24th European Signal Processing Conference. IEEE, pp. 1877–1881.
- Fehri, A., S. Velasco-Forero, and F. Meyer (2017). « Prior-based Hierarchical Segmentation Highlighting Structures of Interest ». In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer, pp. 146–158.
- Fehri, A., S. Velasco-Forero, and F. Meyer (2017). « Segmentation hiérarchique faiblement supervisée ». In: Actes du 26e Colloque GRETSI, Juan-Les-Pins, France.
- Fehri, A., S. Velasco-Forero, and F. Meyer (2018). « Characterizing Images by the Gromov-Hausdorff Distances Between Derived Hierarchies ». In: 2018 IEEE International Conference on Image Processing (ICIP).

Thank you for your attention.

