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Introduction



Information is intrinsically multi-scale

e Single-scale observation is very restrictive.

e Need for multi-scale representations.

AT sk
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Multi-scale representations

e Decomposing images into
fundamental elements easily
interpreted

Linked with human perception (a) Levels of a (b) Fractal model
scale-space
decomposition.

e Scale-space theory *

Fractal model

Granulometry

Hierarchical partitioning © g (d)ierarchical

Granulometry  partitioning
approach

Lindeberg, T, and Bart M.H.R. "Linear scale-space I Basic theory.” Geometry-Driven Diffusion in
Computer Vision. Springer, 1994. 1-38.

AT PsLx
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A variety of morphological hierarchical models

In the literature: Contour

dissimilarity

e Tree-of-shapes

e Max-tree, min-tree e
. .. Sequential Parallel
e Constrained connectivity
| I > 9 ) -
In the thesis: V,And,Or)
e Watershed hierarchies T T
e \Waterfall hierarchy Exogenous
. . . information
¢ Binary-scale climbing
hierarchy
e Hierarchies of levelings  spatial
e Stochastic Watershed information
(SWS) hierarchies

AT PSLx
4/65



Multiplying the viewpoints

A single scale is usually not sufficient

The information is often distributed across scales.

— Hierarchical representation
A single hierarchy is usually not sufficient

There is no single hierarchy that captures all the desired features.

— Multi-model approach by considering several hierarchies

Thesis goal:

Multiply and combine morphological hierarchical representations to be used in
various applications




Graph-based framework

Choice to work with graphs:

¢ Independent from dimension
e Powerful tools available

e Can represent various objects
(images, social networks, etc.)

6/65
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Stochastic Watershed (SWS) Hierarchies



Hierarchies on graphs

K

(a) Region (b) Minimum
Adjacency Spanning Tree
Graph

Ultrametric A
e Cutting edges of the MST by decreasing ' 4
valuations — progressive fusion of
regions
o Minimum Spanning Forest (MSF)
hierarchy (H, A)
o X: ultrametric distance
o Can be modeled as a tree called
dendrogram
o Can be visualized as a saliency map

7/65 (a)



Hierarchies on graphs

e (Zahn)?Inconsistent edges are
cut first

¢ Trivial hierarchy: edges weighed
according to local cues (gradient)

o Myopic
o Chaining effect

¢ Need to enlarge the information
support

(b) Trivial
hierarchy saliency
map

— Need to redefine edge weights to highlight significant contours

ZZahn, C. T (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on computers, 100(1), 68-86.

A PSL*
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Process

Iterate NV times:

Draw random markers m;
Compute associated watershed
Wi, (D)

Z'ie{l

W) =

Non-local estimation of contours
strength

Computationally heavy
Fuzzy contours

3Angulo. J., & Jeulin, D. (2007, October). Stochastic watershed segmentation. In PROC. of the 8th International Symposium on Mathematical
Morphology (pp. 265-276) A |PSL*
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Stochastic Watershed on Graphs

(a) Region (b) Minimum
Adjacency Spanning Tree
Graph

(d) Waterpixels (e) Mosaic
image

4I\/Iachalras, V, Faessel, M., Cardenas-Pefia, D., Chabardes, T, Walter, T and Decenciere, E., 2015. Waterpixels. IEEE Transactions on Image Processing,
24(11), pp.3707-3716.
AT PsL*
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Stochastic Watershed on Graphs
Concept
Idea

Input: any hierarchy on a MST
Markers: random sampling

Output: new MST valuations

Marker-based segmentation

For an edge e; of the MST:
If nse = A, we cut edges with weights > \.
Subtrees T and T; underlie regions Rs and Ry.

est 1S a segmentation frontier iff:

3 at least one marker in R,
3 at least one marker in R,




Stochastic Watershed on Graphs
Calculus

For any markers distribution:

05+ = Pr({3 at least one marker in Ry} AND{3 at least one marker in R;})

=1 — Pr({A marker in R,} OR{# marker in R;})
=1 —Pr({Amarkerin R,}) — Pr({Amarkerin R;}) + Pr({# marker in R, U R;})

For a distribution of markers following a uniform Poisson process:
o Pr({3markerin R}) = 1 — exp™ 5%, when drawing w markers.

= 0y = 1 — Pr({Amarker in R,}) — Pr({3 markerin R;}) + Pr({A marker in R, U R;})

_as _ag _ (as+tay)
=l—exp sY—exp SY4exp” 5 ¢

AT |PSLx

12/65 et



Stochastic Watershed on Graphs
Calculus

For any markers distribution:

05+ = Pr({3 at least one marker in Ry} AND{3 at least one marker in R;})

=1 — Pr({A marker in R,} OR{# marker in R;})
=1 —Pr({Amarkerin R,}) — Pr({Amarkerin R;}) + Pr({# marker in R, U R;})

For a distribution of markers following a uniform Poisson process:
o Pr({3markerin R}) = 1 — exp™ 5%, when drawing w markers.

= 0y = 1 — Pr({Amarker in R,}) — Pr({3 markerin R;}) + Pr({A marker in R, U R;})

as X Ast ap X Ast (astap) xXAst

— ]_ — eXp_ SXAmazx w_ exp_ SX)\mazw + exp_ SXAmax
A7 PSL*
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Stochastic Watershed on Graphs
[llustration

(b) Trivial (c) Area-based (d) Volume-based
hierarchy SWS hierarchy SWS hierarchy

A7 PSL*
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Stochastic Watershed on Graphs

A great versatility
We can act on: Contour
dissimilarity

In]tial dlSSlmilaTlty Combinations
Type of SWS hierarchy: Sequential | Parallel
area—bas_ed, volume-based, I > 3 O A
symmetrical or not ol AndOr)
Markers: points or sets, T T
regionalized or not Exogenous

information

Probability laws governing
markers distributions:
homogenous,
non-homogenous, a priori or
learned

Spatial

information

14/65



Stochastic Watershed on Graphs

A great versatility
We can act on: Contour
dissimilarity

Initial dissimilarity Combinations
Type of SWS hierarchy: Sequential Parallel
area-based, volume-based, I > 3 O A
symmetrical or not V+And.Or)
Markers: points or sets,
regionalized or not Exogenous

qis . information
Probability laws governing y
markers distributions: /

.

homogenous, - - :g:zzes spatial
non—homogenous, a prori or information

learned

AT |PSL*
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Stochastic Watershed on Graphs

A great versatility
We can act on: .
oy e . o . . }\ Bp ‘ B2

Initial dissimilarity _—
. = Bo®Z)N(BiBZ)

Type of SWS hierarchy: s o

area-based, volume-based, —— 5 B.®Z

symmetrical or not T 2

Markers: points or sets, (a)

regionalized or not

Probability laws governing
markers distributions:

homogenous,
non-homogenous, a priori or
learned
(b) Image (c) Vertical (d) Horizontal
markers markers A |PSLx
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Introducing prior spatial information



Stochastic Watershed on Graphs

A great versatility
We can act on: Contour
dissimilarity

Initial dissimilarity -
Type of SWS hierarchy: Sequential Parallel
area-based, volume-based, I > 9 O (B,

S ical V,And,Or)

ymmetrical or not

Markers: points or sets,

regionalized or not

Exogenous
1 . information
Probability laws governing

markers distributions:
homogenous,
non-homogenous, a priori or
learned

AT |PSL*
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A growing number of spatial information sources

e Problem-specific spatial information
e Multimodal images
How can we use them to pilot the hierarchical segmentation process?

£ JPsLx
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SWS model adaptation
Markers spread following a Poisson process

For a region R:

A(R) = mean value of the number of markers falling in R
—A(R)

Pr(# marker in R) = exp

Choice of density

Homogenous density A: A(R) = area(R)A\,
density \: A(R) = f(x VR Az, y) dedy

18/65
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Hierarchy with Regionalized Fineness (HRF)

Exogenous information

E: object or class of interest

0 probability density function (PDF) associated with E on the domain D of the
image [

PM(I, 6g): probabilistic map associated, in which each pixel p(z, y) of I takes as
value Og(z, y) its probability to be part of E

New e, valuation:

08t = ]_ — eX‘piA(RS) — ex‘pfA(Rt) + eXp*A(RSURt)

A(R) = area(R)A




Hierarchy with Regionalized Fineness (HRF)

Exogenous information

E: object or class of interest

6 probability density function (PDF) associated with E on the domain D of the
image [

PM(I, 6 ): probabilistic map associated, in which each pixel p(x, y) of I takes as
value g (x, y) its probability to be part of E

Hst =1— exp—AE(Rs) _ exp—AE(Rt) L exp—AE(RSURt)

/ Op(x,y)\(z,y) dzdy
(z,y)ER




Methodology

e Compute the fine partition 7y, RAG G, MST(G)

(f)Image  (2) Mosaic (h) RAG (i) MST
e Compute a probabilistic map 7, = 7, (7, PM(L, 0E))

g “

(]) Image Probab itytobe a

e compute new values of edges using previous formulas

AT |PSL*
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Application 1: Scalable transmission favoring regions of interest
Prior: face detection °

(Tﬂ ) Image (H ) Probability map associated with “Face” class

Figure : Face detection using Haar wavelets

5\/Iola, P, & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR 2001. Proceedings of the 2001 IEEE CSC
Vol. 1, pp. ). IEEE
ol .pp 1) 27 PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

AT |PSL*
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions

AT |PSL*
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

ot

(a) Non homogenous la b) Homogenous la

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

AT PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

ot

(a) Non homogenous la b) Homogenous la

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

AT |PSLx
23/65



Application 1: Scalable transmission favoring regions of interest

(a) Non homogenous law (b) Homogenous law

Figure - Saliency images

AT PSLx
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Application 1: Scalable transmission favoring regions of interest
Prior: non-blur zones detection ©

(b) Probability maps of non-blur zones

6Su, B, Lu, S, & Tan, C. L. (2011, November). Blurred image region detection and classification. In Proceedings of the 19th ACM international
conference on Multimedia (pp. 1397-1400). ACM.
AT PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(c) Non homogenous law (d) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions
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26/65



Application 1: Scalable transmission favoring regions of interest

4 <

Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest

W

Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

W

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

4, %

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

4 €

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions
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Application 1: Scalable transmission favoring regions of interest

« A

Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest

s A

Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions

AT |PSLx
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Application 1: Scalable transmission favoring regions of interest

« &

Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

AT sk
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Application 1: Scalable transmission favoring regions of interest

4
G

(a) Non homogenous law (b) Homogenous law

Figure : Saliency images

AT PSLx
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Application 1: Scalable transmission favoring regions of interest

IS L ()
N DN ¢
— g
- -
(o )
~ N
J
(a) Non homogenous law (b) Homogenous law

Figure - Saliency images

£ JPsLx
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Application 2: co-hierarchical segmentation

Images from iCoSeg database ”.

3

(@) (b) © (d) (©)

Figure : Images to co-segment

7 Batra, Dhruy, et al. "Interactively co-segmentating topically related images with intelligent scribble guidance.” International journal of computer vision
93.3(2011): 273-292.

AT PsL*
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Application 2: co-hierarchical segmentation

e Matching of interest points
SIFT/SURF/ORB between the
image to segment and all other
images of the class.

e Retain all matched keypoints.
30/65

(a) Prior

™

J—
(b) Associated
probability map

A |PSL*



Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions

AT PSLk
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Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 175 regions

AT PSLk
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Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 150 regions

AT PSLk
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Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 125 regions

AT PSLk
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Application 2: co-hierarchical segmentation

(a) (b) (c)

~af

—= B
(d) (e)

(f)

Figure : Comparison between HRF and hierarchy with homogenous law - 100 regions

AT PSLk
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Application 2: co-hierarchical segmentation

e
(a) (b) (c)

QT

—=
(d) (e)

(f)

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions

31/65



Application 2: co-hierarchical segmentation

~ i
= I
(a) (b) (0)

~calfi

—=
(d) (e)

(f)

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions
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Application 2: co-hierarchical segmentation

. )
s [
(a) (b) ()
.
—-=
(d) (e) (f)

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

31/65



Application 2: co-hierarchical segmentation

g :
- I
(@) (b) (c)
P 5
—= Il
(d) (e) (f)

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions
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Application 2: co-hierarchical segmentation

R
== I
(@) (b) (c)
ot
= I
(d) (e) (f)

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions

AT PsLx
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Application 2: co-hierarchical segmentation

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions

AT PsLx
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Application 2: co-hierarchical segmentation

NS

—\

‘q@m%

(a) (b) (c)

Figure : Saliency images for homogenous process

AT PSLx
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Application 2: co-hierarchical segmentation

(a) (b) (c)

Figure : Saliency images for non-homogenous process

AT PSLx
33/65 a®



Application 3: weakly-supervised hierarchical segmentation
Weakly-supervised HRF algorithm

NN-based localization Probability map
method associated with

the main class in
the image (here
oo PPPo e the “bike” class)

— “prior image”

A%

- input : image + prior image

- output : hierarchy that emphasizes
the zone designated by the prior
image

34/65
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Application 3: weakly-supervised hierarchical segmentation
CNN-based localization method

VGG16 reference CNN classifier,
trained on ImageNet ©.
e Input: image in 224 x 224 pixels
e QOutput = vector of size 1000,
appearance probability of each class.

(a) Image (b) Heatmap output

nnnnnnnnn by CNN-based
method
Figure - VGG16 Network Architecture © Figure : Generation of probability maps *°

8http //image-net.org/
http://www.robots.ox.ac.uk/vgg/research/very_deep/

OI\/I Oquab, L. Bottou, L. Laptey, J. Sivic; "Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural Networks”, in CVPR,
2015, pp. 685-694

£ JPsLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Image (b) Prior: main class
localization

Figure : Image and localization image

AT PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 95 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 90 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 85 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 80 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 70 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 65 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 60 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 55 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 45 regions

A7 PSL*
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 40 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 35 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 30 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions

AT |PSLx
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Saliency images

AT |PSL*
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Perspectives

e Go further: have specific markers depending on the regions
e Use such hierarchies to refine the output of a segmentation module

e Towards sequential refinings

A |PSL*
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Combinations of hierarchies

Hierarchies can be combined to express complex properties
e Sequential combinations by chaining

Contour
dissimilarity

Combinations
Sequential Parallel

A w D

V,And,Or)
(I

Exogenous
information

Spatial
information

40/65
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Combinations of hierarchies
Sequential combinations by chaining

MST

S

7 3 2 5

2 7 4 1

S

etc.

Computations made on
the dendrogram lead
to new MST'’s
valuations.

A new structure
emerges with these
new valuations, after a
reorganization of
internal nodes.

We can repeat the
process with this new
structure as departure
point — ‘chaining of
hierarchies’

41/65




Combinations of hierarchies
Sequential combinations by chaining

Best segmentation (H*, \*) in sequential combinations for a given score **.

Simplified
Mumford-Shah

Weighted-
Human
Disagreement
Rate
(a) (b) (c) (d)
IEEEiiF‘ehrw, A, Velasco-Forero, S., & Meyer, F. (2016, August). Automatic selection of stochastic watershed hierarchies. In EUSIPCO, 2016 (pp. 1877-1881).

A7 PSL*
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Combinations of hierarchies

Hierarchies can be combined to express complex properties

e Parallel (algebraic) combinations: supremum, infimum, linear combination,

and, or, not

Contour
dissimilarity

I  H

Combinations
Sequential Parallel
V/,And,Or)

(I

Exogenous
information

Spatial
information

43/65
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Combinations of hierarchies
Parallel (algebraic) combinations

- General case

-— - -
—— —
—_

@1)2=$(A1,A2)

P
\
RAGD, , )" MST,,

44/65
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Combinations of hierarchies
Parallel (algebraic) combinations

Type of combination Associated ultrametric
Lattice of hierarchies
INF ((H1, A1), (Ha, A2)) SUP(A1, A2)

SUP ((H1, A1), (Hz2, A2)) INF(A1, A2)
Probabilistic combinations
AND ((%1,)\1),(7‘[2,)\2)) )\1 X)\g

OR ((H1, A1), (H2, A2)) A1+ A2 — (A1 x Ag)
NOT ((H, X)) 1-A

Statistical combinations
MEAN (H1, A1), (Ha, A2)) | (A1 + A9)
LC((H],)\l),(Hz,)\z)) a XA+ 08 x A

£ |PSLx
45/65 o



Combinations of hierarchies
Parallel (algebraic) combinations

e Order relation between

Type of combination Associated ultrametric . .

Lattice of hierarchies hierarchies.

INF (H1, A1), (Hz, M) SUP(A1, A0) — SUP, INF of two hierarchies
SUP (1, A1), (Ha, A2)) INF(AL, A2)

Probabilistic combinations e The supremum of two

AND ((H1, A1), (H2, X2)) [ A1 x s ultrametrics is an ultrametric.
OR ((H1, A1), (H2, A2)) A1+ A2 — (A1 x Ag)

NOT ((H, \)) DY ¢ In general, other operators do not
Statistical combinations i pl’OdUCG an ultrametric.

MEAN ((H1, A1), (H2, A2)) 5()\1 + A2)

LC((H],Al),(H27A2)) « X)\1+ﬁ X Ao

£ |PSL*
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Combinations of hierarchies
Parallel (algebraic) combinations

e SWS hierarchies — ultrametric

Type of combination Associated ultrametric . e

Lattice of hierarchies expressing the probabilities of
INF (H1, A1), (Ha, X)) SUP(AL, ) simple events implying markers.
SUP (M1, A1), (Ha, A2)) | INF(A7, Ag) _ _

Probabilistic combinations e Can be combined using boolean
AND ((H1, A1), (H2, Aa)) [ A1 x Ao logical operators to express more
OR((H|A|)(H3A2>) A\+A27<>\| ><)\‘l) [ t

NOT ((H, \)) T—x complex events.

Statistical combinations

MEAN ((H1, A1), (H2, X)) | 3(A1 +A9)

LC((H],Al),(H27A2)) « X)\1+ﬁ X Ao

AT PSLx
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Combinations of hierarchies
Parallel (algebraic) combinations

e Any other combination is

Type of combination Associated ultrametric .

Lattice of hierarchies pOSS]b[e-

INF (H1, A1), (H2, A2)) SUP(A1, Az) : :
SUP (o A0, (7. D) N ) ° Mean,. mgdlan, linear
Probabilistic combinations combinations.
AND ((Hl,)q),(?'lz,)\g)) )\1 X )\2

OR ((H1, A1), (H2, A2)) A1+ A2 — (A1 x Ag)

NOT (%, \)) I—x

Statistical combinations

MEAN ((H1, A1), (H2, A2)) %()\1 + A2)

L(‘((Hl‘)\l)‘(}b)\z)) aX AL+ B %X Ay

AT PSLx
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Combinations of hierarchies
Parallel (algebraic) combinations - General case

m s,

AT |PSLx
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Combinations of hierarchies
Parallel (algebraic) combinations - Simpler case

)\1)2=®()\1,)\2)

Condition

@ st V(x1,m2,y1,y2) € RL, (21 < 22) and (y1 < y2) = B(z1,31) < B(22,92)

A7 PSL*
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Combinations of hierarchies

Example
| b‘ ‘\ - -

) LAB gradient ¢) Gradient over green
charmel
SQ(RGB) 10 SOTZ(RGB) 30 regions ST(RGB) 50 regions
reg1ons

AT sk
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Combinations of hierarchies
Example

(2) HETBEB). 10 regions (b) HE(REB). 30 (c) HE(BEB). 50 regions

surf surf surf

regions

k“'

(d) HE™ D 10regions  (e) HETD) . 30 regions () HETD) . 50 regions

trivial” trivial’ trivial®
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Combinations of hierarchies
Example

(2) HEEGB). 10 regions (b) HETEEB). 30 (c) HET(EEB). 50 regions

surf surf surf

regions

Gr(G) .

trivial”

(d) H 10regions (&) HIT'D) . 30 regions

(g) Hr: 10 regions (h) Hme: 30 regions (i) Hue: 50 regions

52/65
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Structuring the space of hierarchies

— Explosion of the number of possible hierarchies

Gromov-Hausdorff distance
between hierarchies

1 - Pixel-based
representation

2 - Region-based
representation

3 - Hierarchical
representations

4 - Metric space
of hierarchies

53/65

Dimensionality reduction, data

analysis
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Gromov-Hausdorff distance between hierarchies
General case

(X tg) (X )

Definition:
o don(X1, Xo) := 3 ming,max(dis(f), dis(g), di )

s(f,
. { dis(f) 1= MaX(y e x? [ua(z, 2') —ug(f(x), f(z'))]
diS(f, ) ‘= MaXgeX) z'eXy |ua(a: g( )) _u,@(x,?f(x)”

54/65
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Gromov-Hausdorff distance between hierarchies
Simplest case

Kou,) ’ (X,uB)

AT |PSL*
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Gromov-Hausdorff distance between hierarchies
Simplest case

(K ouy) (X )

It simply becomes:

o don((X, ua), (X,ug)) = Maxy grex [tual(z, 2') — ug(z, 2]

55/65
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Gromov-Hausdorff distance between hierarchies

N

cdefa cdef

(X,u,) (X, ) don(111,72) = max (|84, |3-61,|5-91, | 1-2], |4-51)

=4

It simply becomes:
o don((X, ua), (X,ug)) = Maxy grex [tual(z, 2') — ug(z, 2]

AT PSLx
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Characterizing images by interhierarchy distances

List of Hierarchies

{Gromov—Haussdorf Distances J

(H, ) ) A3, 5)

a(s6,1)

0N H) A7)

AI)  dOI) 0N

Q) A, H) Ao, ) O

A ([emcene B c

e Multiplying points of views on the same image
¢ The distances between hierarchies provides valuable information
e New features: interhierarchy distances

57/65
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Experiments and results
Dead-leaves simulated images

+
Mg e

(a) Circle (b) Cross  (c) Flower (d) Vertical (e)
Line Horizontal
Line

Figure : Simulated images by dead leaves model with different primary grains.

AT |PSL*
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Experiments and results
Feature generation

P A -s |
g W= &
e /::
12 U
(c) (d)
/\ >
¢

59/65

surf-Horiz

AND (j{su;ﬁﬁx’ }[sup‘—f(/m)

OR (A, s Hospven)

—

o 1,6

GH-distance matrix

Hierarchies
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Experiments and results
‘Aha” moment 12

100 4 %—I @ 1.0
0T T
- 0.9s % % @ =] o8
\n &
=4 o
5 0s0 £
& a 206
g §
S 085 > °
o
g
= go4{ 0
2 080 <
o
[} o
0.754 o 024 = ° 8 ) o 8
T T T T T T T T T T
5 L 15 0 B 30 B 4 45 50 5 10 15 20 25 30 35 40 45 50
Percentage of images in training set Percentage of images in training set

Figure : Classification error vs the number of images in the training set (25 repetitions) : (a)
Linear SVM on proposed features, (b) CNN.

1ZYan Z, Zhou XS. How intelligent are convolutional neural networks?. arXiv preprint arXiv:1709.06126. 2017 Sep 18.
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Experiments and results

Understandability

o7 * VHU: 'n' ° ’ OO\V '
b . *
06 ...\... !.
0s '°3. . :'
MR o LR
(a) 2D scatterplot by t-SNE (b) 2D scatterplot by L;1-SVM

* Most discriminative feature: dgg (Hsurf—VertSEa HAND(surf—VertSE,surf—HexSE))

AT |PSL*
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Experiments and results
Texture classification

c) Banded

(g) Interlaced

62/65
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Our contributions

e \arious morphological hierarchical representations

¢ Versatile approach to introduce spatial prior information for hierarchical
segmentation

e Combination of hierarchies

e Methodology to study the space of hierarchies

e Interhierarchy distance matrices as powerful geometric features

e Hierarchical representations module in the open-source Smil library

AT PSLx
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Perspectives

e Extension to other types of graphs

The MST is usually not unique: methods to avoid an arbitrary choice

Interhierarchy distances matrices for unsupervised image classification

Local contour descriptors as signatures of saliencies

Refine the output of a segmentation module by exploring a hierarchy with more
details in the zones of interest

AT PSLx
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Personal publications

e Fehri, A, S. Velasco-Forero, and F. Meyer (2016). « Automatic Selection of Stochastic
Watershed Hierarchies ». In: 24th European Signal Processing Conference. IEEE, pp.
1877-1881.

e Fehri, A, S. Velasco-Forero, and F. Meyer (2017). « Prior-based Hierarchical
Segmentation Highlighting Structures of Interest ». In: International Symposium on
Mathematical Morphology and Its Applications to Signal and Image Processing.
Springer, pp. 146-158.

e Fehri, A, S. Velasco-Forero, and F. Meyer (2017). « Segmentation hiérarchique
faiblement supervisée ». In: Actes du 26e Collogue GRETSI, Juan-Les-Pins, France.

e Fehri, A, S. Velasco-Forero, and F. Meyer (2018). « Characterizing Images by the
Gromov-Hausdorff Distances Between Derived Hierarchies ». In: 20418 IEEE
International Conference on Image Processing (ICIP).

Thank you for your attention.
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