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Information is intrinsically multi-scale

(a) (b) (c) (d)

• Single-scale observation is very restrictive.

• Need formulti-scale representations.
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Multi-scale representations

• Decomposing images into
fundamental elements easily
interpreted

• Linked with human perception

• Scale-space theory 1

• Fractal model
• Granulometry
• Hierarchical partitioning

(a) Levels of a
scale-space
decomposition.

(b) Fractal model

(c)
Granulometry
approach

(d) Hierarchical
partitioning

1Lindeberg, T., and Bart M.H.R. ”Linear scale-space I: Basic theory.” Geometry-Driven Diffusion in
Computer Vision. Springer, 1994. 1-38.
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A variety of morphological hierarchical models

In the literature:
• Tree-of-shapes
• Max-tree, min-tree
• Constrained connectivity

In the thesis:
• Watershed hierarchies
• Waterfall hierarchy
• Binary-scale climbing
hierarchy

• Hierarchies of levelings
• Stochastic Watershed
(SWS) hierarchies
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Multiplying the viewpoints

A single scale is usually not sufficient

• The information is often distributed across scales.

→ Hierarchical representation

A single hierarchy is usually not sufficient

• There is no single hierarchy that captures all the desired features.

→Multi-model approach by considering several hierarchies

Thesis goal:

Multiply and combine morphological hierarchical representations to be used in
various applications
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Graph-based framework

Choice to work with graphs:

• Independent from dimension
• Powerful tools available
• Can represent various objects
(images, social networks, etc.)

(a) (b)

(c) (d)
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Hierarchies on graphs

(a) Region
Adjacency
Graph

(b) Minimum
Spanning Tree

• Cutting edges of the MST by decreasing
valuations→ progressive fusion of
regions

◦ Minimum Spanning Forest (MSF)
hierarchy (H,λ)

◦ λ: ultrametric distance
◦ Can be modeled as a tree called
dendrogram

◦ Can be visualized as a saliency map

(a)7/65



Hierarchies on graphs

• (Zahn)2Inconsistent edges are
cut first

• Trivial hierarchy: edges weighed
according to local cues (gradient)

◦ Myopic
◦ Chaining effect

• Need to enlarge the information
support

(a) Image

(b) Trivial
hierarchy saliency
map

→ Need to redefine edge weights to highlight significant contours

2
Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on computers, 100(1), 68-86.
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Stochastic Watershed 3

Process

• Iterate N times:
◦ Draw random markersmi

◦ Compute associated watershed
Wmi(I)

• W̃ (I) =
∑

i∈{1,...,N} Wmi (I)
N

Non-local estimation of contours
strength

• Computationally heavy
• Fuzzy contours

(a) I (b) G(I)

(c)

(d)

3
Angulo, J., & Jeulin, D. (2007, October). Stochastic watershed segmentation. In PROC. of the 8th International Symposium on Mathematical

Morphology (pp. 265-276).
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Stochastic Watershed on Graphs

(a) Region
Adjacency
Graph

(b) Minimum
Spanning Tree

Graph built upon a fine partition of the image4:

(c) Image (d)Waterpixels (e) Mosaic
image

4
Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T. and Decencière, E., 2015. Waterpixels. IEEE Transactions on Image Processing,

24(11), pp.3707-3716.
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Stochastic Watershed on Graphs
Concept
Idea

• Input: any hierarchy on a MST

• Markers: random sampling

• Output: new MST valuations

Marker-based segmentation

For an edge est of the MST:
• If ηst = λ, we cut edges with weights > λ.
• Subtrees Ts and Tt underlie regions Rs and Rt.
• est is a segmentation frontier iff:

◦ ∃ at least one marker in Rs

◦ ∃ at least one marker in Rt
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Stochastic Watershed on Graphs
Calculus

For any markers distribution:

θst = Pr({∃ at least one marker in Rs}AND{∃ at least one marker in Rt})
= 1− Pr({@marker in Rs}OR{@marker in Rt})
= 1− Pr({@marker in Rs})− Pr({@marker in Rt}) + Pr({@marker in Rs ∪Rt})

For a distribution of markers following a uniform Poisson process:
• Pr({∃marker in R}) = 1− exp−

a
S
ω , when drawing ω markers.

⇒ θst = 1− Pr({@marker in Rs})− Pr({@marker in Rt}) + Pr({@marker in Rs ∪Rt})

= 1− exp−
as
S
ω − exp−

at
S
ω + exp−

(as+at)
S

ω
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Calculus

For any markers distribution:

θst = Pr({∃ at least one marker in Rs}AND{∃ at least one marker in Rt})
= 1− Pr({@marker in Rs}OR{@marker in Rt})
= 1− Pr({@marker in Rs})− Pr({@marker in Rt}) + Pr({@marker in Rs ∪Rt})

For a distribution of markers following a uniform Poisson process:
• Pr({∃marker in R}) = 1− exp−

a
S
ω , when drawing ω markers.

⇒ θst = 1− Pr({@marker in Rs})− Pr({@marker in Rt}) + Pr({@marker in Rs ∪Rt})

= 1− exp−
as×λst
S×λmax

ω − exp−
at×λst
S×λmax

ω + exp−
(as+at)×λst

S×λmax
ω
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Stochastic Watershed on Graphs
Illustration

(a) Image

(b) Trivial
hierarchy

(c) Area-based
SWS hierarchy

(d) Volume-based
SWS hierarchy
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Stochastic Watershed on Graphs
A great versatility

We can act on:

• Initial dissimilarity
• Type of SWS hierarchy:
area-based, volume-based,
symmetrical or not

• Markers: points or sets,
regionalized or not

• Probability laws governing
markers distributions:
homogenous,
non-homogenous, a priori or
learned
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Stochastic Watershed on Graphs
A great versatility

We can act on:

• Initial dissimilarity
• Type of SWS hierarchy:
area-based, volume-based,
symmetrical or not

• Markers: points or sets,
regionalized or not

• Probability laws governing
markers distributions:
homogenous,
non-homogenous, a priori or
learned

(a)

(b) Image (c) Vertical
markers

(d) Horizontal
markers
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A growing number of spatial information sources

(a) (b) (c)

(d) (e)

• Problem-specific spatial information
• Multimodal images

How can we use them to pilot the hierarchical segmentation process?
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SWS model adaptation
Markers spread following a Poisson process

For a region R:

• Λ(R) = mean value of the number of markers falling in R

• Pr(@marker in R) = exp−Λ(R)

Choice of density

• Homogenous density λ: Λ(R) = area(R)λ,
• Non-uniform density λ: Λ(R) =

∫
(x,y)∈R λ(x, y) dxdy
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Hierarchy with Regionalized Fineness (HRF)

Exogenous information

• E: object or class of interest
• θE : probability density function (PDF) associated with E on the domainD of the
image I

• PM(I, θE): probabilistic map associated, in which each pixel p(x, y) of I takes as
value θE(x, y) its probability to be part of E

New est valuation:

θst = 1− exp−Λ(Rs)− exp−Λ(Rt)+ exp−Λ(Rs∪Rt)

Λ(R) = area(R)λ
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Hierarchy with Regionalized Fineness (HRF)

Exogenous information

• E: object or class of interest
• θE : probability density function (PDF) associated with E on the domainD of the
image I

• PM(I, θE): probabilistic map associated, in which each pixel p(x, y) of I takes as
value θE(x, y) its probability to be part of E

Key idea

θst = 1− exp−ΛE(Rs)− exp−ΛE(Rt)+ exp−ΛE(Rs∪Rt)

ΛE(R) =
∫
(x,y)∈R

θE(x, y)λ(x, y) dxdy
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Methodology

• Compute the fine partition π0, RAG G,MST (G)

(f ) Image (g) Mosaic (h) RAG (i) MST

• Compute a probabilistic map πµ = πµ(π0, PM(I, θE))

(j) Image (k) Probability to be a
bike

(l) πµ

• compute new values of edges using previous formulas

21/65



Application 1: Scalable transmission favoring regions of interest
Prior: face detection 5

(m) Image (n) Probability map associated with “Face” class

Figure : Face detection using Haar wavelets

5
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR 2001. Proceedings of the 2001 IEEE CSC

(Vol. 1, pp. I-I). IEEE.
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions
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(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions
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Application 1: Scalable transmission favoring regions of interest

(a) Non homogenous law (b) Homogenous law

Figure : Saliency images

24/65



Application 1: Scalable transmission favoring regions of interest
Prior: non-blur zones detection 6

(a) Images

(b) Probability maps of non-blur zones
6
Su, B., Lu, S., & Tan, C. L. (2011, November). Blurred image region detection and classification. In Proceedings of the 19th ACM international

conference on Multimedia (pp. 1397-1400). ACM.
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Application 1: Scalable transmission favoring regions of interest
Volume-based SWS hierarchy

(c) Non homogenous law (d) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions
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Application 1: Scalable transmission favoring regions of interest
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Figure : Saliency images
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Application 1: Scalable transmission favoring regions of interest

(a) Non homogenous law (b) Homogenous law

Figure : Saliency images

28/65



Application 2: co-hierarchical segmentation

Images from iCoSeg database 7.

(a) (b) (c) (d) (e)

Figure : Images to co-segment

7
Batra, Dhruv, et al. ”Interactively co-segmentating topically related images with intelligent scribble guidance.” International journal of computer vision

93.3 (2011): 273-292.
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Application 2: co-hierarchical segmentation

• Matching of interest points
SIFT/SURF/ORB between the
image to segment and all other
images of the class.

• Retain all matched keypoints.

(a) Prior

(b) Associated
probability map
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Application 2: co-hierarchical segmentation

(a) (b) (c)

(d) (e) (f )

Figure : Comparison between HRF and hierarchy with homogenous law - 200 regions
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Application 2: co-hierarchical segmentation
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Application 2: co-hierarchical segmentation

(a) (b) (c)

(d) (e) (f )

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions
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Application 2: co-hierarchical segmentation

(a) (b) (c)

Figure : Saliency images for homogenous process
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Application 2: co-hierarchical segmentation

(a) (b) (c)

Figure : Saliency images for non-homogenous process
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Application 3: weakly-supervised hierarchical segmentation
Weakly-supervised HRF algorithm
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Application 3: weakly-supervised hierarchical segmentation
CNN-based localization method

VGG16 reference CNN classifier,
trained on ImageNet 8.

• Input: image in 224 × 224 pixels

• Output = vector of size 1000,
appearance probability of each class.

Figure : VGG16 Network Architecture 9

(a) Image (b) Heatmap output
by CNN-based
method

Figure : Generation of probability maps 10

8
http://image-net.org/

9
http://www.robots.ox.ac.uk/vgg/research/very_deep/

10
M. Oquab, L. Bottou, I. Laptev, J. Sivic; ”Is Object Localization for Free? - Weakly-Supervised LearningWith Convolutional Neural Networks”, in CVPR,

2015, pp. 685-694

35/65
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Application 3: weakly-supervised hierarchical segmentation

(a) Image (b) Prior: main class
localization

Figure : Image and localization image
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 95 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 90 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 85 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 80 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 75 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 70 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 65 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 60 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 55 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 50 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 45 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 40 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 35 regions

37/65



Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 30 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 25 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 20 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 15 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 10 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Comparison between HRF and hierarchy with homogenous law - 5 regions
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Application 3: weakly-supervised hierarchical segmentation

(a) Non homogenous law (b) Homogenous law

Figure : Saliency images
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Perspectives

• Go further: have specific markers depending on the regions
• Use such hierarchies to refine the output of a segmentation module

(a) (b) (c)

• Towards sequential refinings

39/65
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Combinations of hierarchies

Hierarchies can be combined to express complex properties
• Sequential combinations by chaining
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Combinations of hierarchies
Sequential combinations by chaining
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Combinations of hierarchies
Sequential combinations by chaining

Best segmentation (H∗, λ∗) in sequential combinations for a given score 11.

Simplified
Mumford-Shah

(a) (b) (c) (d)Weighted-
Human

Disagreement
Rate

(a) (b) (c) (d)
11
Fehri, A., Velasco-Forero, S., & Meyer, F. (2016, August). Automatic selection of stochastic watershed hierarchies. In EUSIPCO, 2016 (pp. 1877-1881).

IEEE.
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Combinations of hierarchies

Hierarchies can be combined to express complex properties
• Parallel (algebraic) combinations: supremum, infimum, linear combination,
and, or, not
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Combinations of hierarchies
Parallel (algebraic) combinations

- General case

44/65



Combinations of hierarchies
Parallel (algebraic) combinations

Type of combination Associated ultrametric
Lattice of hierarchies
INF ((H1,λ1), (H2,λ2)) SUP(λ1,λ2)

SUP ((H1,λ1), (H2,λ2)) INF(λ1,λ2)

Probabilistic combinations
AND ((H1,λ1), (H2,λ2)) λ1 × λ2

OR ((H1,λ1), (H2,λ2)) λ1 + λ2 − (λ1 × λ2)

NOT ((H,λ)) 1− λ

Statistical combinations
MEAN ((H1,λ1), (H2,λ2))

1
2(λ1 + λ2)

LC ((H1,λ1), (H2,λ2)) α× λ1 + β × λ2
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Combinations of hierarchies
Parallel (algebraic) combinations

Type of combination Associated ultrametric
Lattice of hierarchies
INF ((H1,λ1), (H2,λ2)) SUP(λ1,λ2)

SUP ((H1,λ1), (H2,λ2)) INF(λ1,λ2)

Probabilistic combinations
AND ((H1,λ1), (H2,λ2)) λ1 × λ2

OR ((H1,λ1), (H2,λ2)) λ1 + λ2 − (λ1 × λ2)

NOT ((H,λ)) 1− λ

Statistical combinations
MEAN ((H1,λ1), (H2,λ2))

1
2(λ1 + λ2)

LC ((H1,λ1), (H2,λ2)) α× λ1 + β × λ2

• Order relation between
hierarchies.
→ SUP, INF of two hierarchies

• The supremum of two
ultrametrics is an ultrametric.

• In general, other operators do not
produce an ultrametric.
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Combinations of hierarchies
Parallel (algebraic) combinations

Type of combination Associated ultrametric
Lattice of hierarchies
INF ((H1,λ1), (H2,λ2)) SUP(λ1,λ2)

SUP ((H1,λ1), (H2,λ2)) INF(λ1,λ2)

Probabilistic combinations
AND ((H1,λ1), (H2,λ2)) λ1 × λ2

OR ((H1,λ1), (H2,λ2)) λ1 + λ2 − (λ1 × λ2)

NOT ((H,λ)) 1− λ

Statistical combinations
MEAN ((H1,λ1), (H2,λ2))

1
2(λ1 + λ2)

LC ((H1,λ1), (H2,λ2)) α× λ1 + β × λ2

• SWS hierarchies→ ultrametric
expressing the probabilities of
simple events implying markers.

• Can be combined using boolean
logical operators to express more
complex events.
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Combinations of hierarchies
Parallel (algebraic) combinations

Type of combination Associated ultrametric
Lattice of hierarchies
INF ((H1,λ1), (H2,λ2)) SUP(λ1,λ2)

SUP ((H1,λ1), (H2,λ2)) INF(λ1,λ2)

Probabilistic combinations
AND ((H1,λ1), (H2,λ2)) λ1 × λ2

OR ((H1,λ1), (H2,λ2)) λ1 + λ2 − (λ1 × λ2)

NOT ((H,λ)) 1− λ

Statistical combinations
MEAN ((H1,λ1), (H2,λ2))

1
2(λ1 + λ2)

LC ((H1,λ1), (H2,λ2)) α× λ1 + β × λ2

• Any other combination is
possible.

• Mean, median, linear
combinations.
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Combinations of hierarchies
Parallel (algebraic) combinations - General case
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Combinations of hierarchies
Parallel (algebraic) combinations - Simpler case

Condition

⊕ s.t. ∀(x1, x2, y1, y2) ∈ R4
+, (x1 ≤ x2) and (y1 ≤ y2) ⇒ ⊕(x1, y1) ≤ ⊕(x2, y2)
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Combinations of hierarchies
Example

(a) Image (b) LAB gradient (c) Gradient over green
channel

(d) HGr(RGB)
vol : 10

regions
(e) HGr(RGB)

vol : 30 regions (f ) HGr(RGB)
vol : 50 regions
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Combinations of hierarchies
Example

(a) HGr(RGB)
surf : 10 regions (b) HGr(RGB)

surf : 30
regions

(c) HGr(RGB)
surf : 50 regions

(d) HGr(G)
trivial: 10 regions (e) HGr(G)

trivial: 30 regions (f ) HGr(G)
trivial: 50 regions
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Combinations of hierarchies
Example

(a) HGr(RGB)
surf : 10 regions (b) HGr(RGB)

surf : 30
regions

(c) HGr(RGB)
surf : 50 regions

(d) HGr(G)
trivial: 10 regions (e) HGr(G)

trivial: 30 regions (f ) HGr(G)
trivial: 50 regions

(g) HINF: 10 regions (h) HINF: 30 regions (i) HINF: 50 regions
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Structuring the space of hierarchies

→ Explosion of the number of possible hierarchies

Gromov-Hausdorff distance
between hierarchies

Dimensionality reduction, data
analysis

(a)

(b) (c) (d)
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Gromov-Hausdorff distance between hierarchies
General case

Definition:
• dGH(X1, X2) :=

1
2 minf,gmax(dis(f), dis(g), dis(f, g))

•
{

dis(f) := max(x,x′)∈X2
1
|uα(x, x′)− uβ(f(x), f(x

′))|
dis(f, g) := maxx∈X1,x′∈X2 |uα(x, g(x′))− uβ(x

′, f(x))|
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Gromov-Hausdorff distance between hierarchies
Simplest case
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Gromov-Hausdorff distance between hierarchies
Simplest case

It simply becomes:
• dGH((X,uα), (X,uβ)) = maxx,x′∈X |uα(x, x′)− uβ(x, x

′)|
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Gromov-Hausdorff distance between hierarchies
Simplest case

It simply becomes:
• dGH((X,uα), (X,uβ)) = maxx,x′∈X |uα(x, x′)− uβ(x, x

′)|
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Characterizing images by interhierarchy distances

• Multiplying points of views on the same image
• The distances between hierarchies provides valuable information
• New features: interhierarchy distances
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Experiments and results
Dead-leaves simulated images

(a) Circle (b) Cross (c) Flower (d) Vertical
Line

(e)
Horizontal
Line

(f ) (g) (h) (i) (j)

Figure : Simulated images by dead leaves model with different primary grains.
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Experiments and results
Feature generation

(a) (b)

(c) (d)

(e)
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Experiments and results
“Aha” moment 12

(f ) (g)

Figure : Classification error vs the number of images in the training set (25 repetitions) : (a)
Linear SVM on proposed features, (b) CNN.

12
Yan Z, Zhou XS. How intelligent are convolutional neural networks?. arXiv preprint arXiv:1709.06126. 2017 Sep 18.

60/65



Experiments and results
Understandability

(a) 2D scatterplot by t-SNE (b) 2D scatterplot by L1-SVM

• Most discriminative feature: dGH(Hsurf−V ertSE ,HAND(surf−V ertSE,surf−HexSE))
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Experiments and results
Texture classification

(c) Banded (d) Chequered

(e) Dotted (f ) Fibrous

(g) Interlaced
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Our contributions

• Various morphological hierarchical representations
• Versatile approach to introduce spatial prior information for hierarchical
segmentation

• Combination of hierarchies
• Methodology to study the space of hierarchies
• Interhierarchy distance matrices as powerful geometric features
• Hierarchical representations module in the open-source Smil library
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Perspectives

• Extension to other types of graphs
• The MST is usually not unique: methods to avoid an arbitrary choice
• Interhierarchy distances matrices for unsupervised image classification
• Local contour descriptors as signatures of saliencies
• Refine the output of a segmentation module by exploring a hierarchy with more
details in the zones of interest
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Personal publications

• Fehri, A., S. Velasco-Forero, and F. Meyer (2016). « Automatic Selection of Stochastic
Watershed Hierarchies ». In: 24th European Signal Processing Conference. IEEE, pp.
1877–1881.

• Fehri, A., S. Velasco-Forero, and F. Meyer (2017). « Prior-based Hierarchical
Segmentation Highlighting Structures of Interest ». In: International Symposium on
Mathematical Morphology and Its Applications to Signal and Image Processing.
Springer, pp. 146–158.

• Fehri, A., S. Velasco-Forero, and F. Meyer (2017). « Segmentation hiérarchique
faiblement supervisée ». In: Actes du 26e Colloque GRETSI, Juan-Les-Pins, France.

• Fehri, A., S. Velasco-Forero, and F. Meyer (2018). « Characterizing Images by the
Gromov-Hausdorff Distances Between Derived Hierarchies ». In: 2018 IEEE
International Conference on Image Processing (ICIP).

Thank you for your attention.
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