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Introduction



Hierarchical segmentation

Segmentation : process of partitioning an image into a set of
meaningful regions according to some criteria.

• Segmentation = model

• Simple partition inadequate :
number of regions? Criteria
for regions choice?

• A lot of problems are
inherently multi-scale :
different scales bring different
information
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Hierarchical segmentation

We can introduce criteria to prioritize the information in the image in
order to characterize the image.

(a) Image (b) Trivial
hierarchy

(c)
Surface-based
hierarchy

(d)
Volume-based
hierarchy
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A growing number of spatial exogenous information sources

• localization methods adapted
to each problem

• different channels
→ How can we use exogenous information to pilot the
hierarchical segmentation process? 5



Fine partition

The initial oversegmentation contains all potentially interesting
information blocks. Example : superpixels segmentation or watershed
segmentation.

(k) Image (l) Fine partition using
watershed

(m) Waterpixels
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Hierarchical segmentation

(n) Example of hierarchical segmentation

Hierarchy : nested partitions structured by an order relation
(predecessor relation).
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Watershed hierarchies

To each type of flooding corresponds a hierarchy.

The flooding can be tailored by introducing external criteria :

• markers = flooding sources

• geometric criteria
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Ultrametric Contours Maps

Each contour is valued according to its persistence in the hierarchy
constructed following a given modality (for example depending on the
surfaces of regions it separates)
→ as many ways of questioning this image

(o) Trivial
hierarchy
(contrast)

(p) Surface-based
hierarchy

(q) Volume-based
hierarchy
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Stochastic Watershed
Hierarchies



Stochastic Watershed 1

N iterations of the following simulation process :

• draw random markers

• compute the corresponding watershed segmentation

Then : mean of the results.
→ non-local estimation of contours strength
→ computationally heavy

1.Angulo, J., & Jeulin, D. (2007, October). Stochastic watershed
segmentation. In PROC. of the 8th ISMM (pp. 265-276).
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Stochastic Watershed on Graphs 2

A : a partition represented by an edge-weighed graph ; B : a minimum spanning tree of the graph, with 2 markers in
blue : the highlighted edge in blue is the highest edge on the path linking the two markers ; C : the segmentation
obtained when cutting this edge ; D blue and orange domain are the domains of variation of the two markers
generating the same segmentation.

2.Meyer, F., & Stawiaski, J. (2010). A stochastic evaluation of the contour
strength. In Joint Pattern Recognition Symposium (pp. 513-522).
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Stochastic Watershed on Graphs

Let denote µ(R) the number of random markers falling in a region R.
We want to attribute to an edge est the following probability value :

ω̃st = P[(µ(Rs) ≥ 1) ∧ (µ(Rt ) ≥ 1)]

= 1− P[(µ(Rs) = 0) ∨ (µ(Rt ) = 0)]

= 1− P(µ(Rs) = 0)− P(µ(Rt ) = 0)

+ P(µ(Rs ∪ Rt ) = 0)

(1)

Choices :

• form of markers

• law governing markers
distribution
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A great versatility

• Choice of the laws governing markers distribution (potentially
learned)

• Punctual or non-punctual markers

(a) Erosion with vertical
structuring element

(b) Erosion with
horizontal structuring
element

→ How to use prior information to obtain a hierarchy suited to a
particular problem? 13



Hierarchies highlighting
structures of interest using
prior information



Markers spread following a Poisson process

For a region R :
P(µ(R) = 0) = exp−Λ(R), (2)

Λ(R) = mean value of the number of markers falling in R.

ω̃st = P(µ(Rs) ≥ 1 ∧ µ(Rt ) ≥ 1)

= 1− exp−Λ(Rs)−exp−Λ(Rt ) + exp−Λ(Rs∪Rt )
(3)
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Choice of density

When the Poisson distribution has an homogeneous density λ :

Λ(R) = area(R)λ, (4)

When the Poisson distribution has a non-uniform density λ :

Λ(R) =

∫
(x,y)∈R

λ(x , y) dxdy (5)
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Hierarchy with Regionalized Fineness (HRF)

Exogenous information

• E : object or class of interest

• θE : probability density function (PDF) associated with E
on the domain D of the image I

• PM(I, θE ) : probabilistic map associated, in which each
pixel p(x , y) of I takes as value θE (x , y) its probability to
be part of E

Key idea

ω̃st = 1− exp−ΛE (Rs)−exp−ΛE (Rt ) + exp−ΛE (Rs∪Rt ) (6)

ΛE (R) =

∫
(x,y)∈R

θE (x , y)λ(x , y) dxdy (7)
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Methodology

• Compute the fine partition π0, RAG G,MST (G)

(c) Image (d) Mosaic (e) RAG (f) MST

• Compute a probabilistic map πµ = πµ(π0,PM(I, θE ))

(g) Image (h) Probabilistic Map
associated with “Bike"
class

(i) πµ

• compute new values of edges using previous formulas
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Multiple sources

θE1 , θE2 →
(θE1 +θE2 )

2 λ
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Applications



Application 1 : hierarchical segmentation (prior : face detec-
tion)

(j) Image (k) Face detection

Face detection using Haar wavelets

Source : https://gist.github.com/dannguyen/cfa2fb49b28c82a1068f
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Application 1 : hierarchical segmentation (prior : face detec-
tion)

Obtention of a probability map using a morphological distance
function

(a) Face detection (b) Associated probability map
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(c) Non homogeneous law (d) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
200 regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
175 regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
150 regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
125 regions

21



Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
100 regions

21



Application 1 : hierarchical segmentation (prior : face detec-
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Comparison between HRF and hierarchy with homogeneous law - 75
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 50
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 25
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 20
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 15
regions

21



Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 10
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 5
regions
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Application 1 : hierarchical segmentation (prior : face detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Saliency images
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Application 2 : hierarchical segmentation (prior : blur detec-
tion)

(a) Image (b) Image

Images
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Application 2 : hierarchical segmentation (prior : blur detec-
tion)

Probability maps of non-blur zones

Su, B., Lu, S., & Tan, C. L. (2011, November). Blurred image region detection and classification. In Proceedings of

the 19th ACM international conference on Multimedia (pp. 1397-1400). ACM.
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Application 2 : hierarchical segmentation (prior : blur detec-
tion)

Image and associated probability map
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Application 2 : hierarchical segmentation (prior : blur detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law -
200 regions
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regions
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Application 2 : hierarchical segmentation (prior : blur detec-
tion) - volume-based hierarchy

(a) Non homogeneous law (b) Homogeneous law

Saliency images
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

Images from iCoSeg database (http:
//chenlab.ece.cornell.edu/projects/touch-coseg/).

(a) (b) (c) (d) (e)

Images to co-segment
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

Matching of interest points SIFT/SURF/ORB between the image to
segment and all other images of the class.
We keep on an image all matched points.

(a) (b)

Example of matching ; prior result of the matching with all other
images of the class
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

→We use a morphological distance function to attribute to each point
a probability of being part of the object depending on its distance to
the interest points.

(a) (b)

prior and associated probability map
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

(a) (b) (c)

(d) (e) (f)

Comparison between HRF and hierarchy with homogeneous law -
200 regions 31
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(a) (b) (c)
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

(a) (b) (c)

(d) (e) (f)

Comparison between HRF and hierarchy with homogeneous law - 5
regions 31



Application 3 : hierarchical cosegmentation (prior : matching
between objects)

(a) (b) (c)

Saliency images for homogeneous process
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Application 3 : hierarchical cosegmentation (prior : matching
between objects)

(a) (b) (c)

Saliency images for non-homogeneous process
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Application 4 : Hierarchical co-segmentation of RGB+D images

→We use the Depth information to segment the RGB image. So that
we can privilege objects at a given distance and draw markers
accordingly.

(a) (b) (c)

RGB+D images and markers associated with a given depth

Note : images are not realigned, holes in depth image
34



Application 4 : Hierarchical co-segmentation of RGB+D images

(a) Non homogeneous law (b) Non homogeneous law

Saliency images
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by CNN-based method)

We make use of a reference CNN classifier, trained on ImageNet 3

called VGG16.
Input : image in 224 × 224 pixels
Output = 1000 long vector with a probability of apparition of each
class in this image.

4

VGG16 Network Architecture (by Zhicheng Yan et al.)

3.http ://image-net.org/
4.http://www.robots.ox.ac.uk/~vgg/research/very_deep/

36
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by CNN-based method)

(a) Image

5

(b) Heatmap output by CNN-based
method

Generation of probability maps using CNN-based method

M. Oquab, L. Bottou, I. Laptev, J. Sivic ; "Is Object Localization for Free? - Weakly-Supervised Learning With

Convolutional Neural Networks", in CVPR, 2015, pp. 685-694
5.https://github.com/heuritech/convnets-keras
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Image (b) Waterpixels (c) Prior : main class
localization

Image, fine partition and localization image
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 95
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 90
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 85
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 80
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 75
regions

39



Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 70
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 65
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 60
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 55
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 50
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 45
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 40
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 35
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 30
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 25
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
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(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 20
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 5
regions
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Non homogeneous law (b) Homogeneous law

Saliency images

40



Modulating the HRF depending on regions features

Key idea

Take into account features extracted from pairs of regions.

Example : volume-based SWS

χ(Rs,Rt )λ, with χ(Rs,Rt ) = ωst

→ Can we use any prior information in a similar way?
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Highlighting transitions between background and foreground

Idea : have more precision where the limit between foreground and
background is actually unclear.

(a) Image (b) Rough
localization

{
λ̃ = χλ

χ(Rs,Rt ) = max(m(Rs),m(Rt ))(1−min(m(Rs),m(Rt )))
0.01+σ(Rs)σ(Rt )

,
(8)

With m(Rs) and σ(R) the normalized mean and normalized variance
of region R.
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Highlighting transitions between background and foreground

(c) Image (d) Face detection
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Highlighting transitions between background and foreground

(e) Homogeneous (f) HFR (g) Pairs-dependent
HFR

Comparison - 25 regions
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Highlighting transitions between background and foreground

(a) Homogeneous (b) HFR (c) Pairs-dependent
HFR

Comparison - 10 regions
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Highlighting transitions between background and foreground

(a) Homogeneous (b) HFR (c) Pairs-dependent
HFR

Comparison - 4 regions
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Highlighting transitions between background and foreground

(a) Image (b)
Homogeneous

(c) HFR (d)
Pairs-dependent
HFR

Saliency images.
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Conclusion

• Fast process for obtaining hierarchies

• Possibility to incorporate exogenous information while
preserving the important structures in the image

• Very versatile : takes a probability map as input, returns a
hierarchy (multi-scale information) as output

Perspectives :

• Extend this work to videos

• Semantic segmentation : use HRF to refine contours of the main
objects in image and enhance semantic segmentation
algorithms output
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Thank you for your attention.
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Supplementary Material

M. Oquab, L. Bottou, I. Laptev, J. Sivic ; "Is Object Localization for Free? - Weakly-Supervised Learning With

Convolutional Neural Networks", in CVPR, 2015, pp. 685-694
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Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Classification results

More important classes in the image→ we look for classes with a
probability superior to thresh = 0.1 51



Application 5 : Hierarchical segmentation (prior : rough loca-
lization provided by a CNN)

(a) Prior for
s=0.7

(b) Prior for
s=1.0

(c) Prior for
s=1.4

(d) Prior for
s=2.0

(e) Prior for
s=2.8

Comparison between priors for different scale parameters

→ Here we select s=2.0 by max-pooling
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