

Prior-Based Hierarchical Segmentation Highlighting Structures of Interest

Amin Fehri, Santiago Velasco-Forero, Fernand Meyer 13th International Symposium on Mathematical Morphology, May 15-17, 2017

MINES ParisTech, PSL Research University, Center for Mathematical Morphology

Introduction

Stochastic Watershed Hierarchies

Hierarchies highlighting structures of interest using prior information

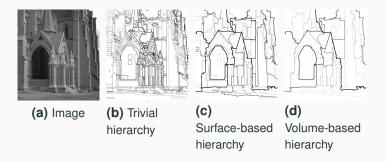
Applications

Introduction

Segmentation : process of partitioning an image into a set of meaningful regions according to some criteria.

- Segmentation = model
- Simple partition inadequate : number of regions ? Criteria for regions choice ?
- A lot of problems are inherently **multi-scale** : different scales bring different information

We can introduce criteria to prioritize the information in the image in order to characterize the image.



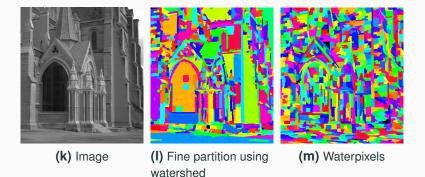
A growing number of spatial exogenous information sources

- localization methods adapted to each problem
- different channels

 \rightarrow How can we use exogenous information to pilot the hierarchical segmentation process ?

Fine partition

The initial oversegmentation contains all potentially interesting information blocks. Example : superpixels segmentation or watershed segmentation.



Hierarchical segmentation

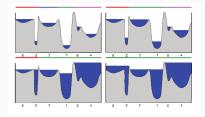
Image 3 levels of the hierarchy

(n) Example of hierarchical segmentation

Hierarchy : nested partitions structured by an order relation (predecessor relation).

Watershed hierarchies

To each type of flooding corresponds a hierarchy.



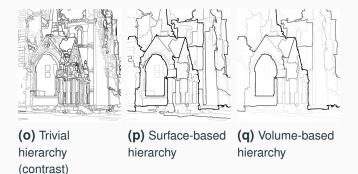
The flooding can be tailored by introducing external criteria :

- markers = flooding sources
- geometric criteria

Ultrametric Contours Maps

Each contour is valued according to its persistence in the hierarchy constructed following a given modality (for example depending on the surfaces of regions it separates)

 \rightarrow as many ways of questioning this image



Stochastic Watershed Hierarchies

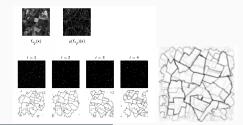
Stochastic Watershed¹

N iterations of the following simulation process :

- draw random markers
- compute the corresponding watershed segmentation

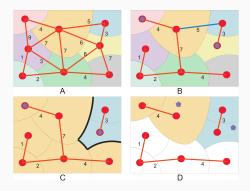
Then : mean of the results.

- \rightarrow non-local estimation of contours strength
- \rightarrow computationally heavy



1.Angulo, J., & Jeulin, D. (2007, October). Stochastic watershed segmentation. In PROC. of the 8th ISMM (pp. 265-276).

Stochastic Watershed on Graphs²



A : a partition represented by an edge-weighed graph; B : a minimum spanning tree of the graph, with 2 markers in blue : the highlighted edge in blue is the highest edge on the path linking the two markers; C : the segmentation obtained when cutting this edge; D blue and orange domain are the domains of variation of the two markers generating the same segmentation.

2.Meyer, F., & Stawiaski, J. (2010). A stochastic evaluation of the contour strength. In Joint Pattern Recognition Symposium (pp. 513-522).

Let denote $\mu(R)$ the number of random markers falling in a region R. We want to attribute to an edge e_{st} the following probability value :

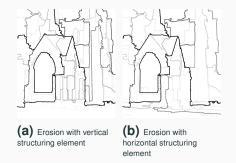
$$\begin{split} \tilde{\omega}_{st} &= \mathbb{P}[(\mu(\mathsf{R}_s) \ge 1) \land (\mu(\mathsf{R}_t) \ge 1)] \\ &= 1 - \mathbb{P}[(\mu(\mathsf{R}_s) = 0) \lor (\mu(\mathsf{R}_t) = 0)] \\ &= 1 - \mathbb{P}(\mu(\mathsf{R}_s) = 0) - \mathbb{P}(\mu(\mathsf{R}_t) = 0) \\ &+ \mathbb{P}(\mu(\mathsf{R}_s \cup \mathsf{R}_t) = 0) \end{split}$$
(1)

Choices :

- form of markers
- law governing markers distribution

A great versatility

- Choice of the laws governing markers distribution (potentially learned)
- Punctual or non-punctual markers



 \rightarrow How to use prior information to obtain a hierarchy suited to a particular problem ?

Hierarchies highlighting structures of interest using prior information For a region R:

$$\mathbb{P}(\mu(R) = 0) = \exp^{-\Lambda(R)}, \tag{2}$$

 $\Lambda(R)$ = mean value of the number of markers falling in R.

$$\begin{split} \tilde{\omega}_{st} &= \mathbb{P}(\mu(\mathsf{R}_s) \ge 1 \land \mu(\mathsf{R}_t) \ge 1) \\ &= 1 - \exp^{-\Lambda(\mathsf{R}_s)} - \exp^{-\Lambda(\mathsf{R}_t)} + \exp^{-\Lambda(\mathsf{R}_s \cup \mathsf{R}_t)} \end{split}$$
(3)

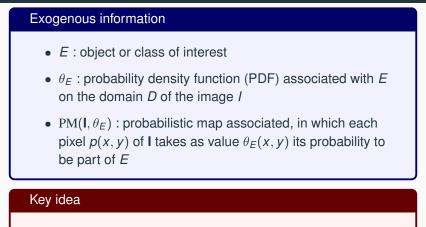
When the Poisson distribution has an homogeneous density λ :

$$\Lambda(R) = \operatorname{area}(R)\lambda, \tag{4}$$

When the Poisson distribution has a non-uniform density λ :

$$\Lambda(R) = \int_{(x,y)\in R} \lambda(x,y) \,\mathrm{d}x \,\mathrm{d}y \tag{5}$$

Hierarchy with Regionalized Fineness (HRF)



$$\tilde{\omega}_{st} = 1 - \exp^{-\Lambda_{\mathcal{E}}(\mathsf{R}_{s})} - \exp^{-\Lambda_{\mathcal{E}}(\mathsf{R}_{t})} + \exp^{-\Lambda_{\mathcal{E}}(\mathsf{R}_{s} \cup \mathsf{R}_{t})}$$
(6)

$$\Lambda_E(\mathsf{R}) = \int_{(x,y)\in\mathsf{R}} \theta_E(x,y) \lambda(x,y) \,\mathrm{d}x \,\mathrm{d}y \tag{7}$$

Methodology

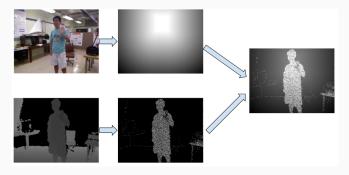
• Compute the fine partition π_0 , RAG \mathcal{G} , $\mathcal{MST}(\mathcal{G})$

(c) Image

(e) RAG

• Compute a probabilistic map $\pi_{\mu} = \pi_{\mu}(\pi_0, \text{PM}(\mathbf{I}, \theta_E))$

• compute new values of edges using previous formulas



 $heta_{E_1},\, heta_{E_2}
ightarrow rac{(heta_{E_1}+ heta_{E_2})}{2}\lambda$

Applications

Application 1 : hierarchical segmentation (prior : face detection)

(j) Image

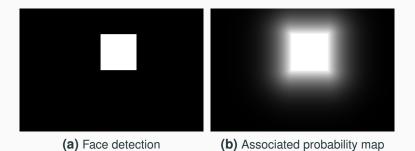
(k) Face detection

Face detection using Haar wavelets

Source:https://gist.github.com/dannguyen/cfa2fb49b28c82a1068f

Application 1 : hierarchical segmentation (prior : face detection)

Obtention of a probability map using a morphological distance function



(c) Non homogeneous law

(d) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 200 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 175 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 150 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 125 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 100 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 75 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 50 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 25 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 20 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 15 regions

(a) Non homogeneous law

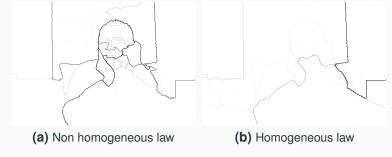
(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 10 regions

(a) Non homogeneous law

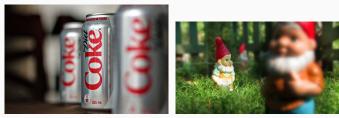
(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 5 regions



Saliency images

Application 2 : hierarchical segmentation (prior : blur detection)

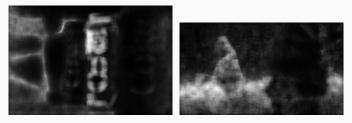


(a) Image

(b) Image

Images

Application 2 : hierarchical segmentation (prior : blur detection)

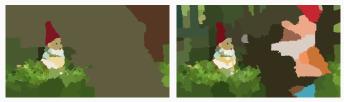


Probability maps of non-blur zones

Su, B., Lu, S., & Tan, C. L. (2011, November). Blurred image region detection and classification. In Proceedings of the 19th ACM international conference on Multimedia (pp. 1397-1400). ACM.

Application 2 : hierarchical segmentation (prior : blur detection)

Image and associated probability map



(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 200 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 175 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 150 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 125 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 100 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 75 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 50 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 25 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 20 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 15 regions

(a) Non homogeneous law

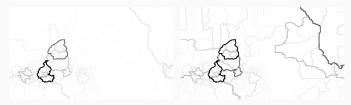
(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 10 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 5 regions



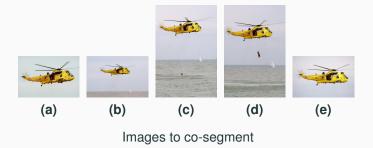
(a) Non homogeneous law

(b) Homogeneous law

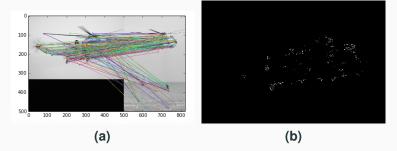
Saliency images

Images from iCoSeg database (http:

//chenlab.ece.cornell.edu/projects/touch-coseg/).



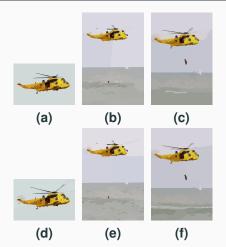
Matching of interest points SIFT/SURF/ORB between the image to segment and all other images of the class. We keep on an image all matched points.



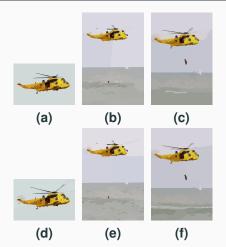
Example of matching; *prior* result of the matching with all other images of the class

 \rightarrow We use a morphological distance function to attribute to each point a probability of being part of the object depending on its distance to the interest points.

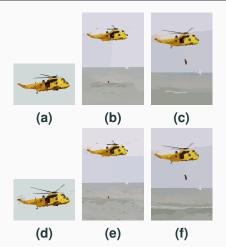
prior and associated probability map



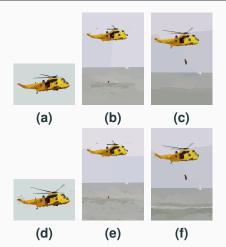
Comparison between HRF and hierarchy with homogeneous law - 200 regions



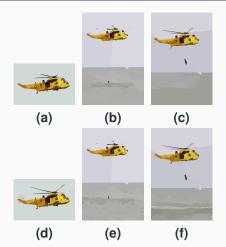
Comparison between HRF and hierarchy with homogeneous law - 200 regions



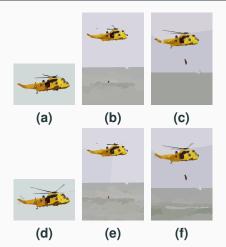
Comparison between HRF and hierarchy with homogeneous law - 175 regions



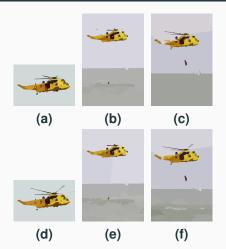
Comparison between HRF and hierarchy with homogeneous law - 150 regions



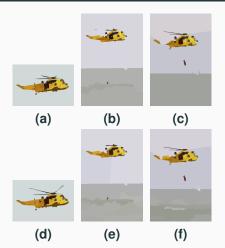
Comparison between HRF and hierarchy with homogeneous law - 125 regions



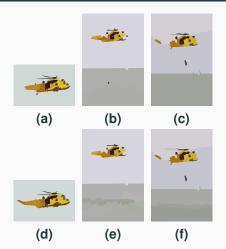
Comparison between HRF and hierarchy with homogeneous law - 100 regions



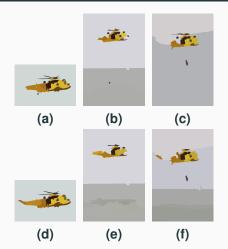
Comparison between HRF and hierarchy with homogeneous law - 75 regions



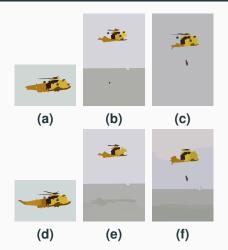
Comparison between HRF and hierarchy with homogeneous law - 50 regions



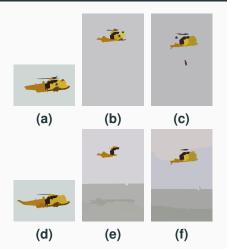
Comparison between HRF and hierarchy with homogeneous law - 25 regions



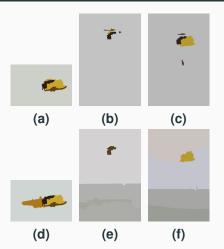
Comparison between HRF and hierarchy with homogeneous law - 20 regions



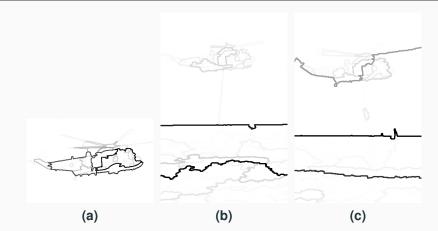
Comparison between HRF and hierarchy with homogeneous law - 15 regions



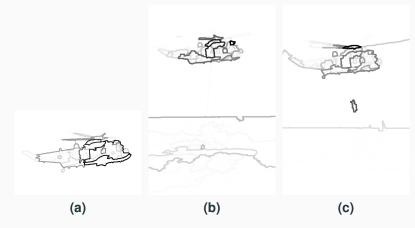
Comparison between HRF and hierarchy with homogeneous law - 10 regions



Comparison between HRF and hierarchy with homogeneous law - 5 regions



Saliency images for homogeneous process



Saliency images for non-homogeneous process

 \rightarrow We use the Depth information to segment the RGB image. So that we can privilege objects at a given distance and draw markers accordingly.

RGB+D images and markers associated with a given depth

Note : images are not realigned, holes in depth image

Application 4 : Hierarchical co-segmentation of RGB+D images

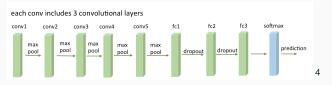
(b) Non homogeneous law

Saliency images

We make use of a reference CNN classifier, trained on ImageNet³ called VGG16.

Input : image in 224 \times 224 pixels

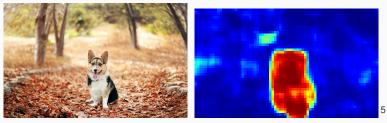
Output = 1000 long vector with a probability of apparition of each class in this image.



VGG16 Network Architecture (by Zhicheng Yan et al.)

3.http://image-net.org/

4.http://www.robots.ox.ac.uk/~vgg/research/very_deep/



(a) Image

(b) Heatmap output by CNN-based method

Generation of probability maps using CNN-based method

M. Oquab, L. Bottou, I. Laptev, J. Sivic; "Is Object Localization for Free? - Weakly-Supervised Learning With

Convolutional Neural Networks", in CVPR, 2015, pp. 685-694

5.https://github.com/heuritech/convnets-keras

(a) Image (b) Waterpixels (c) Prior : main class localization

Image, fine partition and localization image

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 95 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 90 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 85 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 80 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 75 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 70 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 65 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 60 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 55 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 50 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 45 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 40 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 35 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 30 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 25 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 20 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 15 regions

(a) Non homogeneous law

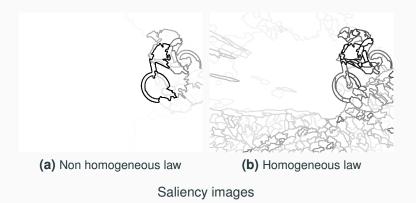
(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 10 regions

(a) Non homogeneous law

(b) Homogeneous law

Comparison between HRF and hierarchy with homogeneous law - 5 regions



Key idea

Take into account features extracted from **pairs** of regions.

Example : volume-based SWS

 $\chi(\mathsf{R}_s,\mathsf{R}_t)\lambda$, with $\chi(\mathsf{R}_s,\mathsf{R}_t) = \omega_{st}$

 \rightarrow Can we use any prior information in a similar way ?

Idea : have more precision where the limit between foreground and background is actually unclear.

$$\begin{cases} \tilde{\lambda} = \chi \lambda \\ \chi(\mathsf{R}_{s}, \mathsf{R}_{t}) = \frac{\max(m(\mathsf{R}_{s}), m(\mathsf{R}_{t}))(1 - \min(m(\mathsf{R}_{s}), m(\mathsf{R}_{t})))}{0.01 + \sigma(\mathsf{R}_{s})\sigma(\mathsf{R}_{t})}, \end{cases}$$
(8)

With $m(R_s)$ and $\sigma(R)$ the normalized mean and normalized variance 42 of region R.

(c) Image

(d) Face detection

(e) Homogeneous

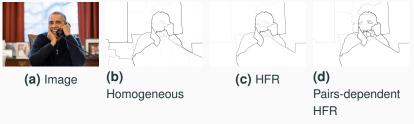
(f) HFR

(g) Pairs-dependent HFR

Comparison - 25 regions

Comparison - 10 regions

Comparison - 4 regions



Saliency images.

Conclusion

- Fast process for obtaining hierarchies
- Possibility to incorporate exogenous information while preserving the important structures in the image
- Very versatile : takes a probability map as input, returns a hierarchy (multi-scale information) as output

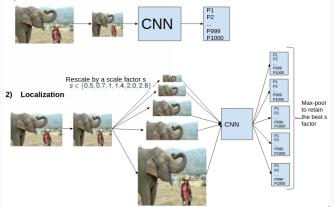
Perspectives :

- Extend this work to videos
- Semantic segmentation : use HRF to refine contours of the main objects in image and enhance semantic segmentation algorithms output

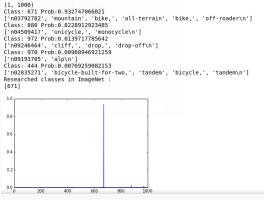
Thank you for your attention.

Supplementary Material

1) Classification



M. Oquab, L. Bottou, I. Laptev, J. Sivic; "Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural Networks", in CVPR, 2015, pp. 685-694



(a) Classification results

More important classes in the image \rightarrow we look for classes with a probability superior to *thresh* = 0.1

Comparison between priors for different scale parameters

 \rightarrow Here we select s=2.0 by max-pooling