CHARACTERIZING IMAGES BY THE GROMOV-HAUSDORFF DISTANCES BETWEEN DERIVED HIERARCHIES

Hierarchical segmentation: a scale-space representation

- 1. Information is **intrinsically** multi-scale:
- Single-scale observation is very restrictive
- Need for multi-scale representations
- Hierarchies on graphs: Cutting edges of the Minimum Spanning Tree by decreasing valuations → progressive fusion of regions
 - Minimum Spanning Forest (MSF) hierarchy $(\mathcal{H}, \boldsymbol{\lambda})$
 - λ : ultrametric distance
 - Can be modeled as a tree called **dendrogram**
 - Can be visualized as a **saliency map**

Figure: A hierarchy $(\mathcal{H}, \boldsymbol{\lambda})$

Multiplying the viewpoints on the same image

A single hierarchy is usually not sufficient:

 There is no single hierarchy that captures all the desired features.

 \rightarrow Multi-model approach by considering several hierarchies.

 \rightarrow We work with **morphological** hierarchies [2], but our approach is extendable to any type of hierarchy.

(b) Trivial hierarchy (c) Area-based SWS

hierarchy

Structuring the space of hierarchies

- We can structure the space of hierarchies itself into a metric space
- We do so by providing it with the **Gromov-Hausdorff distance** [1] between hierarchies.

Amin Fehri¹

¹MINES ParisTech, PSL Research University, CMM - Center of Mathematical Morphology

Gromov-Hausdorff distance between hierarchies

- $d_{GH}((X_1, u_{\alpha}), (X_2, u_{\beta})) :=$
- $\frac{1}{2}\min_{f,g}\max(dis(f),dis(g),dis(f,g))$
- $\begin{cases} dis(f) := \max_{(x,x') \in X_1^2} |u_{\alpha}(x,x') u_{\beta}(f(x),f(x'))| \\ dis(f,g) := \max_{x \in X_1, x' \in X_2} |u_{\alpha}(x,g(x')) u_{\beta}(x',f(x))| \end{cases}$

In our case, the data points are on the same graph so that it simply becomes:

• $d_{GH}((X, u_{\alpha}), (X, u_{\beta})) = \max_{x, x' \in X} |u_{\alpha}(x, x') - u_{\beta}(x, x')|$

- The distances between hierarchies provides valuable information
- **New features**: interhierarchy distances

Example:

- Let us consider two hierarchies:
- $(\mathcal{H}_1, \boldsymbol{\lambda}_1)$ (highlighting contrasted contours)
- $(\mathcal{H}_2, \boldsymbol{\lambda}_2)$ (highlighting contrasted contours between big regions)

regions

(j) \mathcal{H}_2 : 30 regions

(h) \mathcal{SM}_1

(|) \mathcal{SM}_2

We have: d_{GH}

(f) \mathcal{H}_1 : 30 region

regions

Santiago-Velasco Forero¹ Fernand Meyer¹

Dead-leaves simulated images

Results

• Learning efficiency: (``Aha'' moment [3] of sudden clarity) - Our features vs CNN

Figure: Classification error vs the number of images in the training set (25 repetitions) : (a) Linear SVM on proposed features, (b) CNN.

Understandability

provides a geometrical interpretation of the image.

[1] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Springer Science & Business Media, 2007.

- [2] F. Meyer. Stochastic watershed hierarchies. In Advances in Pattern Recognition (ICAPR), 2015 Eighth International Conference on, pages 1--8. IEEE, 2015.
- [3] Z. Yan and X. S. Zhou. How intelligent are convolutional neural networks? arXiv preprint arXiv:1709.06126, 2017.

Figure: Difference of saliency maps $|\mathcal{SM}_2 - \mathcal{SM}_1|$.

$$(\mathcal{H}_1, \mathcal{H}_2) = \max(|\mathcal{SM}_2 - \mathcal{SM}_1|).$$

Experiments and results

Figure: Discriminating between the classes "Flowers" and "Horizontal Lines" is not straightforward, but it is made much easier using our features. Using the variable selection method L1-SVM, we can isolate the more discriminative distances for two specific classes to separate. In this case, the most discriminative feature is: $d_{GH}(\mathcal{H}_{surf-VertSE}, \mathcal{H}_{AND}(surf-VertSE, surf-HexSE))$. It

References