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Hierarchical segmentation: a scale-space representation

1. Informaধon is intrinsically mulধ-scale:
Single-scale observaধon is very restricধve

Need for mulধ-scale representaধons

2. Hierarchies on graphs: Cuষng edges of the
Minimum Spanning Tree by decreasing valuaধons
→ progressive fusion of regions
Minimum Spanning Forest (MSF) hierarchy (H, λ)
λ: ultrametric distance
Can be modeled as a tree called dendrogram

Can be visualized as a saliency map

Figure: A hierarchy (H, λ)

Multiplying the viewpoints on the same image

A single hierarchy is usually not sufficient:

There is no single hierarchy that captures all the

desired features.

→ Mulধ-model approach by considering several

hierarchies.

→ We work with morphological hierarchies [2], but

our approach is extendable to any type of hierarchy.

(a) Image

(b) Trivial hierarchy (c) Area-based SWS

hierarchy

(d) Volume-based
SWS hierarchy

Structuring the space of hierarchies

We can structure the space of hierarchies itself into a metric space

We do so by providing it with the Gromov-Hausdorff distance [1] between hierarchies.

Gromov-Hausdorff distance between hierarchies

Definiধon [1]:

dGH((X1, uα), (X2, uβ)) :=
1
2 minf,g max(dis(f ), dis(g), dis(f, g)){

dis(f ) := max(x,x′)∈X2
1
|uα(x, x′) − uβ(f (x), f (x′))|

dis(f, g) := maxx∈X1,x′∈X2 |uα(x, g(x′)) − uβ(x′, f (x))|

In our case, the data points are on the same graph so that

it simply becomes:

dGH((X, uα), (X, uβ)) = maxx,x′∈X |uα(x, x′) − uβ(x, x′)|

Characterizing images by interhierarchy distances

Mulধplying points of views on the same image

The distances between hierarchies provides valuable informaধon

New features: interhierarchy distances

Example:
Let us consider two hierarchies:

(H1, λ1) (highlighধng contrasted contours)
(H2, λ2) (highlighধng contrasted contours between big regions)

(e) H1: 10

regions

(f) H1: 30

regions

(g) H1: 50

regions

(h) SM1

(i) H2: 10

regions

(j) H2: 30

regions

(k) H2: 50

regions

(l) SM2

Figure: Difference of saliency maps |SM2 − SM1|.

We have: dGH(H1, H2) = max(|SM2 − SM1|).

Experiments and results

Dead-leaves simulated images
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Figure: Simulated images by dead leaves model with different primary grains.

Feature generaধon

Results

Learning efficiency: (``Aha'' moment [3] of sudden clarity) - Our features vs CNN

(a) (b)

Figure: Classificaধon error vs the number of images in the training set (25 repeধধons) : (a) Linear SVM on proposed features,

(b) CNN.

Understandability

(a) 2D scaħerplot by t-SNE (b) 2D scaħerplot by L1-SVM

Figure: Discriminaধng between the classes “Flowers” and “Horizontal Lines” is not straighĤorward, but it is made much easier

using our features. Using the variable selecধon method L1-SVM, we can isolate the more discriminaধve distances for two

specific classes to separate. In this case, the most discriminaধve feature is: dGH(Hsurf−V ertSE, HAND(surf−V ertSE,surf−HexSE)). It
provides a geometrical interpretaধon of the image.
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