CHARACTERIZING IMAGES BY THE GROMOV-HAUSDORFF DISTANCES BETWEEN DERIVED HIERARCHIES
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Hierarchical segmentation: a scale-space representation

Gromov-Hausdorff distance between hierarchies
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1. Information is intrinsically multi-scale:

= Single-scale observation is very restrictive
= Need for multi-scale representations

2. Hierarchies on graphs: Cutting edges of the
Minimum Spanning Tree by decreasing valuations
— progressive fusion of regions
= Minimum Spanning Forest (MSF) hierarchy (H, A)
= \: ultrametric distance
= Can be modeled as a tree called dendrogram
= Can be visualized as a saliency map

Figure: A hierarchy (H, A)

Multiplying the viewpoints on the same image

Definition [1]:
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A single hierarchy is usually not sufficient:

= There is no single hierarchy that captures all the
desired features.

(a) Image

— Multi-model approach by considering several
hierarchies.

— We work with morphological hierarchies [2], but
our approach is extendable to any type of hierarchy.
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(b) Trivial hierarchy  (C) Area-based SWS  (d) Volume-based
hierarchy SWS hierarchy

Structuring the space of hierarchies

= We can structure the space of hierarchies itself into a metric space
= \We do so by providing it with the Gromov-Hausdorff distance [1] between hierarchies.

1 - Pixel-based
representation

2 - Region-based
representation

3 - Hierarchical
representations

4 - Metric space
of hierarchies
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In our case, the data points are on the same graph so that
it simply becomes:
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Characterizing images by interhierarchy distances
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= Multiplying points of views on the same image
= The distances between hierarchies provides valuable information
= New features: interhierarchy distances

= Example:
Let us consider two hierarchies:
= (H1, A1) (highlighting contrasted contours)
= (Hs, A2) (highlighting contrasted contours between big regions)
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Figure: Difference of saliency maps |[SMy — SM,].
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VWe have: dGH<H1, HZ) = max(|8/\/lg — S./\/l1|>
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Experiments and results

Dead-leaves simulated images .
Feature generation
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Figure: Simulated images by dead leaves model with different primary grains.
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Results

= Learning efficiency: (" "Aha" moment [3] of sudden clarity) - Our features vs CNN
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Figure: Classification error vs the number of images in the training set (25 repetitions) : (a) Linear SVM on proposed features,
(b) CNN.

= Understandability
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(b) 2D scatterplot by L;-SVM

(a) 2D scatterplot by ¢-SNE

Figure: Discriminating between the classes “Flowers” and “Horizontal Lines” is not straightforward, but it is made much easier
using our features. Using the variable selection method L1-SVM, we can isolate the more discriminative distances for two
specific classes to separate. In this case, the most discriminative feature is: deg(Hourf—vertSEs HAND (sur f—VertSE sur f—HezSE))- It
provides a geometrical interpretation of the image.
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